Heavy Quark cross section and forward backward asymmetries at ILC250

Adrián Irles* on behalf of the ILD collaboration

MATTER AND TECHNOLOGY

ΔΙΤΔΝΔ

Updated results with the newest and more realistic mc2020 simulations

Two fermion processes

Differential cross section for (relativistic) di-fermion production

$$\frac{d\sigma}{d\cos\theta} (e_L^- e_R^+ \rightarrow f\bar{f}) = Q_{LL} (1 + \cos\theta)^2 + Q_{LR} (1 - \cos\theta)^2$$
$$\frac{d\sigma}{d\cos\theta} (e_R^- e_L^+ \rightarrow f\bar{f}) = Q_{RR} (1 + \cos\theta)^2 + Q_{RL} (1 - \cos\theta)^2$$

- The helicity amplitudes Σ_{μ} , contain the couplings g_{L}/g_{R} (or Form factors or EFT factors)
- Left≠right (characteristic for each fermion)

Only beam polarisation allows inspection of the 4 helicity amplitudes for all fermions

Observables

Quark (fermion) electroweak couplings can be inferred from cross section, Rq and forward backward asymmetry AFB observables.

Normalized quantities are highly preferred: to control (remove) systematic uncertainties

Measuring Rb and Rq

Assuming that:

- Minimal contribution from the backgrounds
- the preselection efficiency is the same for all flavours

$$\begin{split} \varepsilon_c &= c - tagging \ eff \ . \\ \widetilde{\varepsilon_x} &= x - quark \ mis - tagging \ effi \ . (prob \ of \ tagging \ x \ as \ c - quark) \\ & (1+\rho) = angular \ correl \ . term \end{split}$$

$$\underbrace{f_{1tag}}_{f_{2tag}} = \varepsilon_c R_c + \widetilde{\varepsilon_b} R_b + \widetilde{\varepsilon_{uds}} (1 - R_b - R_c)$$

$$f_{2tag} = \varepsilon_c^2 (1 + \rho) R_c + \widetilde{\varepsilon_b}^2 R_b + \widetilde{\varepsilon_{uds}}^2 (1 - R_b - R_c)$$
Measured quantities

6

Assuming that:

- Minimal contribution from the backgrounds
- the preselection efficiency is the same for all flavours

Assuming that:

- Minimal contribution from the backgrounds
- the preselection efficiency is the same for all flavours

Assuming that:

- Minimal contribution from the backgrounds
- the preselection efficiency is the same for all flavours

$$f_{1tag} = \varepsilon_c R_c + \widetilde{\varepsilon_b} R_b + \widetilde{\varepsilon_{uds}} (1 - R_b - R_c)$$

$$f_{2tag} = \varepsilon_c^2 (1 + \rho) R_c + \widetilde{\varepsilon_b}^2 R_b + \widetilde{\varepsilon_{uds}}^2 (1 - R_b - R_c)$$

We are interested in Rc / epsilon_c (or b)

ideally
$$f_{1tag} \simeq \varepsilon_c R_c$$
$$f_{2tag} \simeq \varepsilon_c^2 R_c$$
with
$$BKG \simeq 0$$
$$\varepsilon_b^{pres} \simeq \varepsilon_c^{pres} \simeq \varepsilon_u^{pres}$$

What about the backgrounds ? Not a problem at Z-Pole runs ILC250 ?

► Event selection → backgrounds from radiative return (x10 signal) events and WW/ZZ/HZ

Signal

Rad return bkg

Polarization	$\sigma_{e^{-}e^{+} \rightarrow q\overline{q}}(E_{\gamma} < 35 GeV)$ [fb]			$\sigma_{e^{-}e^{+} \rightarrow q\overline{q}}(E_{\gamma} > 35 GeV)$ [fb]		
	$b\overline{b}$	$C\overline{C}$	$q\overline{q} (q = uds)$	$b\overline{b}$	$c\overline{c}$	$q\overline{q} (q = uds)$
$e_L e_R^+$	5677.2	8518.1	18407.3	20531.4	18363.8	57651.3
$e_R^- e_L^+$	1283.2	3565.0	5643.5	12790.8	11810.8	36179.5

Diboson bkg

Channel	$\sigma_{e_L^-e_R^+ \to X}$ [fb]	$\sigma_{e_R^-e_L^+ o X}$ [fb]
$X = WW \to q_1 \bar{q_2} q_3 \bar{q_4}$	14874.4	136.4
$X = ZZ \to a_1 \bar{a_1} a_2 \bar{a_2}$	1402.1	605.0
$X = HZ \rightarrow q_1q_2H$	346.0	222.0

Preselection

qqH

1.0

0.2

0.2

0.2

0.2

0.1

B/S (%)

ZZ

4.3

0.6

0.6

0.6

0.6

0.6

0.2

ww

44.9

6.2

5.8

5.8

5.8

6.0

1.5

► Event selection → backgrounds from radiative return (x10 signal) events and WW/ZZ/HZ

Cuts

 C1-2: Energy_photon Kreco < 35 GeV & 2jet inv_mass > 140GeV

(Cuts for events with ISR escaping the reconstruction)

• **C3-5:** photon removal cuts

(veto events with reconstructed ISR photons)

 C6: y23 <0.015 --> y23=2 vs 3 jet likeness (cut against dibosons)

$$|\vec{k}| \approx K_{reco} = \frac{250 \,\text{GeV}}{\sin \Psi_{acol} + \sin \theta_1 + \sin \theta_2}.$$

		100.0
	CUT 1	81.1
	CUT 2	80.8
pR	CUT 3	80.8
eL_	CUT 4	80.8
	CUT 5	77.7
	CUT 6	64.0
	-	

CUT 1 CUT 2

CUT 5 CUT 6

너 CUT 3 CUT 4

Signal I	Efficiend	су (%)	B/S (%)			
bb	СС	qq (uds)	RadRet	WW	ZZ	qqH
100.0	100.0	100.0	562.0	1.3	5.7	2.1
81.0	81.0	81.2	41.4	0.2	0.9	0.3
80.8	80.9	81.2	38.0	0.2	0.8	0.3
80.7	80.6	80.2	17.6	0.2	0.8	0.3
80.7	80.6	80.1	17.4	0.2	0.8	0.3
77.5	77.2	76.2	6.9	0.2	0.8	0.3
64.0	64.1	63.6	5.8	0.0	0.3	0.1

qq (uds) RadRet

287.0

20.3

18.6

10.4

10.3

4.8

3.8

100.0

81.0

81.0

80.0

79.9

75.9

63.3

Signal Efficiency (%)

СС

100.0

80.9

80.9

80.5

80.5

77.2

64.1

bb

Preselection

► Event selection → backgrounds from radiative return (x10 signal) events and WW/ZZ/HZ

Cuts

 C1-2: Energy_photon Kreco < 35 GeV & 2jet inv_mass > 140GeV

(Cuts for events with ISR escaping the reconstruction)

• **C3-5:** photon removal cuts

(veto events with reconstructed ISR photons)

 C6: y23 <0.015 --> y23=2 vs 3 jet likeness (cut against dibosons)

Flavour tagging

- A high-purity secondary vertex finder based on build-up vertex clustering,
- a jet clustering algorithm using vertex information
- and multivariate jet flavor tagging for the separation of b and c jet

Design goals

- Impact parameter resolution
 σ(d₀) < 5 ⊕ 10 / (p[GeV] sin^{3/2}θ) μm
- Transverse momentum resolution $\sigma(1/p_T) = 2 \times 10^{-5} \text{ GeV}^{-1} \bigoplus 1 \times 10^{-3} / (p_T \sin^{1/2}\theta)$

 $f_{1tag} = \frac{(N 1 - Bkg)}{2(N 0 - Bkg)} = (N \text{ jets with } 1 c - tag) / (N \text{ preselected jets})$ $f_{2tag} = \frac{(N 2 - Bkg)}{(N 0 - Bkg)} = (N \text{ events double tag}) / (N \text{ preselected events})$

JLpR (80,30)

Excellent flavour tagging capabilities expected Small angular correlations ~0% (similar to SLD, smaller than LEP – 1-2%)

Excellent flavour tagging capabilities expected Small angular correlations ~0% (similar to SLD, smaller than LEP – 1-2%)

LEP

2500

Beam spot size

SLC

>>

>>

EF03 Kickoff

ILC

Results (eLpR 80,30)

Rc=0.248915. I quote all the estimated relative uncertainties.

- Statistical uncertainties (2000 fb-1 of shared luminosity)
 - Only **stats**: **Delta → 0.13%**
- Preselection uncertainties
 - The preselection is MC dependent.... Assume 10% level accuracy
 - The flavour selection gives differences of ~1% between flavours. We take this as a total uncertainty .
 - Delta → 0.1%
- Can we know the <u>mistagging efficiencies</u> at the 10% level
 - LEP estimated with at similar accuracy hep-ex/0503005
 - If yes → Delta ~ 0.05%
 - Using or not the MC prediction of **rho** gives us: **Delta → 0.06%**
- Can we know the **backgrounds** at the 10% accuracy?
 - If yes → **Delta ~ 0.08%**
- What about polarization?
 - Using the estimates from 10.3204/PUBDB-2019-03013 we estimate: Delta → 0.003%
- ► Assuming 1% precision in Rb: Delta → 0.04%

$$R_c(e_L p_R, 80, 30) = 0.2489(SM - LO) \pm 0.14\%(stat) \pm 0.16\%(syst.)$$

$$R_c(e_R p_L, 80, 30) = 0.3144(SM - LO) \pm 0.20\%(stat) \pm 0.17\%(syst.)$$

C-quark case: systematics are dominated by the flavour selection estimations

$$R_b(e_L p_R, 80, 30) = 0.1694(SM - LO) \pm 0.12\%(stat) \pm 0.15\%(syst.)$$

$$R_b(e_R p_L, 80, 30) = 0.1251(SM - LO) \pm 0.22\%(stat) \pm 0.17\%(syst.)$$

B-quark case: systematics are dominated by the background estimation (assumed to be know only at 10% level)

Conservative estimation of the systematic unc. in both cases

Key Message: we reduce the usage of MC Tools for systematic control to the minimum

> We want to measure observables at 0.1% level accuracy

Measuring AFB

AFB measurement: basis

> We are required to **measure the jet charge**

- Using K-ID and/or full Vtx charge measurement
- K-ID is better suited for the C-quark (Vtx is better suited for b-quark)
- Ideally we would use the **double charge** measurements
 - To control / reduce the systematic uncertainties

- Today I give only a taste on the K-method
 - Results on b/c AFB are being updated
 - Cooming soon

High Level Reco Challenges: Particle ID

For AFB measurements we are required to measure the jet-charge

- Therefore we are interested in a high power of K/pion separation
- Possible solutions: using dEdx and/or TOF \rightarrow Yellow points

Kaon identification for the ccbar case

- Using dEdx separation power: signed [(dEdx-dEdx_{exp-kaon})/Δ_{dEdx}]²
 - dEdx_{exp-kaon} = theoretical curve (B.Bloch)
 - Delta dEdX = experimental uncertainty
 - Zero worries about protons

Efficiency / Purity of K ID

c-quark

25

Efficiency / Purity of K ID

Summary

▶ We show updated results for b/c R-observable and AFB-observable

▶ ILC offers a unique framework for these studies to reach the maximal experimental precision

- Tiny beam spot
- Excellent vertexing capabilities
- Kaon identification thanks to the TPC
- Beam polarisation
- Comprehensive assessment of systematic uncertainties
 - To be updated for the AFB studies
- Experimental per mile level accuracy reachable
 - Avoiding MC for efficiency estimations
 - Un-sensitive to luminosity systematics

Motivation: BSM Z' resonances

- Many BSM scenarios (i.e. Randal Sundrum, compositeness, Higgs unification models...) predict heavy resonances coupling to the (t,b) doublet and also lighter fermions (i.e. c/s quarks)
 - BSM resonances tend to couple to the right components.
 - Only coupling to (t,b) doublet
 - → Peskin, Yoon arxiv:1811.07877
 → Djouadi et al arxiv:hep-ph/0610173
 - Coupling also to lighter fermions
 - → Hosotani et al arxiv:1705.05282 arxiv:2006.02157

Detector Technologies

Vertex: CMOS, DEPFET, FPCCD, ...

Tracker:

TPC (GEM, micromegas, pixel) + silicon pixels/strips

ECAL:

Silicon (5x5mm²) or Scintillator (5x45mm²) with Tungsten absorber

HCAL:

Scintillator tile (3x3 cm²) or Gas RPC (1x1 cm²) with Steel absorber

All inside solenoidal coil of 3-4 T

Detector R&D collaborations:

ILD Design Goals

Features of ILC:

low backgrounds, low radiation, low collision rate (5-10 Hz)

These allow us to pursue aggressive detector design:

	Detector Requirements 🛛 🛶 🛶 🛶	Physics
•	Impact parameter resolution $\sigma(d_0) < 5 \bigoplus 10 / (p[GeV] sin^{3/2}\theta) \mu m$	H → bb,cc,gg,ττ
•	Transverse momentum resolution $\sigma(1/p_T) = 2 \times 10^{-5} \text{ GeV}^{-1} \oplus 1 \times 10^{-3} / (p_T \sin^{1/2}\theta)$	Total e+e- \rightarrow ZH cross section
•	Jet energy resolution 3-4% (around E _{jet} ~100 GeV)	H→invisible
•	Hermeticity $\theta_{min} = 5 mrad$	H→invisible; BSM

R. Ete: "The ILD Software Tools and Detector Performance"

10

9

- ▶ Method used to remove modeling dependence on the efficiency of b-tagging → aiming to the per mil precision
- The sample consisted on events made of two hadronic jets (qqbar)
- The LEP/SLC preselection consisted on a "simple" veto of Z→ leptons events
- The method is based on the comparison of single vs double tagged samples

$$\begin{split} N_{0} = N_{presel} = & [\varepsilon_{pres-signal} \, \sigma_{q\bar{q}} + \varepsilon_{pres-bkg} \, \sigma_{bkg}] \cdot Lum \\ N_{1tag,c} = & [\varepsilon_{pres-signal} (\varepsilon_{c} \, \sigma_{c\bar{c}} + \varepsilon_{b} \, \sigma_{b\bar{b}} + \varepsilon_{q} \, \sigma_{q\bar{q}}) + \varepsilon_{c} \, \varepsilon_{bkg} \, \sigma_{bkg}] \cdot Lum \\ N_{2tag,c} = & [\varepsilon_{pres-signal} (\varepsilon_{c}^{2} (1 + \rho_{c}) \, \sigma_{c\bar{c}} + \varepsilon_{b}^{2} \, \sigma_{b\bar{b}} + \varepsilon_{q}^{2} \, \sigma_{q\bar{q}}) + \varepsilon_{c}^{2} \, \varepsilon_{bkg} \, \sigma_{bkg}] \cdot Lum \end{split}$$

- ▶ Method used to remove modeling dependence on the efficiency of b-tagging → aiming to the per mil precision
- The sample consisted on events made of two hadronic jets (qqbar)
- The LEP/SLC preselection consisted on a "simple" veto of Z→ leptons events
- The method is based on the comparison of single vs double tagged samples

$$\begin{split} N_{0}^{signal} &= N_{presel} = [\varepsilon_{pres-signal} \sigma_{q\bar{q}}] \cdot Lum \\ N_{1tag,c}^{signal} &= [\varepsilon_{pres-signal} (\varepsilon_{c} \sigma_{c\bar{c}} + \varepsilon_{b} \sigma_{b\bar{b}} + \varepsilon_{q} \sigma_{q\bar{q}})] \cdot Lum \\ N_{2tag,c}^{signal} &= [\varepsilon_{pres-signal} (\varepsilon_{c}^{2} (1 + \rho_{c}) \sigma_{c\bar{c}} + \varepsilon_{b}^{2} \sigma_{b\bar{b}} + \varepsilon_{q}^{2} \sigma_{q\bar{q}})] \cdot Lum \end{split}$$

> For the moment, let's assume that we know the bkg contribution with perfect accuracy

• We remove the bkg contribution from the equations

eLpR (80,30)

ILD

ILD

Double charge measurements (b-quark)

pg-equation

- Mistakes in the charge calculation due to loss tracks (acceptance issues, mis reconstruction etc) have to be corrected and estimated using data → Mistakes produce migrations (flip of the cos(θ))
- The migrations are restored by determining the purity of the charge calculation using double charge measurements
 - Accepted events, N_{acc}, with (-,+) compatible charges
 - Rejected events, N_{rei}, non compatible (-,++) charges

$$N_{acc} = Np^2 + Nq^2$$
$$N_{rej} = 2Npq$$
$$1 = p + q$$

The **pq-equation** allows for correcting for migrations (finding the correct N) and in particular for the last and ultimate migration (dilution) due to B0 oscillations

Incognitas: pg and N.

Preselection

- Alternatives to m(2jets) ?
- Estimator of the energy of the photon ISR using only the two reconstructed jets.
 - From momentum conservation (if the photon/s are emitted parallel to the beam pipe):

Preselection : Kreco

Estimator of the energy of the photon ISR

▶ We apply a cut of Kreco<35 GeV

Some signal events have larger Kreco (~15%)

- Because of detector resolution and double photon ISR
- Some radiative return events have Kreco<35GeV (~7%)
- Because the photon(s) has not escaped through the beam pipe
- Can we identify the photon clustered in one or both jets and veto these events?

Final steps of the preselection

Cut on y23<0.015 (jet distance at which the 2 jet event would be clustered in 3 jets)

▶ Cut on mj1+mj2<100 GeV

Cut 2: veto of events in which the ISR photon was reconstructed and identified inside the detector

Kaon identification for the ccbar case

Using dEdx separation power:

signed [(dEdx-dEdx_{exp-kaon})/ Δ_{dEdx}]²

- dEdx_{exp-kaon} = theoretical curve (B.Bloch)
- Delta dEdX = experimental uncertainty
- Zero worries about protons

Could we imagine a factor 2 improvement in the power separation ? (i.e. cluster counting)

Kaon identification for the ccbar case

Using dEdx separation power:

signed [(dEdx-dEdx_{exp-kaon})/ Δ_{dEdx}]²

- dEdx_{exp-kaon} = theoretical curve (B.Bloch)
- Delta dEdX = experimental uncertainty
- Zero worries about protons
- Could we imagine a factor 2 improvement in the power separation ? (i.e. cluster counting)
 - Then the kaon ID performance will be almost perfect

Factor 1.3-1-4 seems more realistic than a factor 2

With current TPC testbeam prototypes

