Computing in the US Snowmass Process

Peter Onyisi

ILCX Workshop, 29 Oct 2021

TExAS
The University of Texas at Austin
Introduction to Snowmass

• Snowmass is the US particle physics decadal planning process
 - sponsored by the American Physical Society’s Division of Particles and Fields
 - aims to compile a list of compelling physics goals and capabilities to address them
 - actual strategic plan is derived from Snowmass outputs by P5 (“Particle Physics Project Prioritization Panel”) which is then input to US funding agencies
 - HEP is a global enterprise: international input is very welcome

• Snowmass process recognizes the importance not only of abstract “physics goals” but also of the ability to reach them
 - need to consider state of and advances in detector instrumentation, facilities & accelerator technology, theory precision, personnel development, and computing
Snowmass 2021*

- Snowmass process began basically at the start of the pandemic, aiming to produce reports in early 2021 and have a major meeting in summer 2021.
- The disruption of the pandemic, and desire to have a face-to-face meeting at the end of the process, caused us to have a “pause” in activities.
 - as of September 2021 activities have resumed
 - white papers & reports to be prepared first half of 2022
 - new plan is to hold the Community Summer Study at the University of Washington Seattle, July 17-27, 2022
- “Snowmass Day” held in September to mark the restart of activity
Snowmass “Frontiers”

- Discussions are organized through “frontiers”
 - within broad frontiers there are working groups for specific topics
- Many discussions need to cross frontiers: designated liaisons

CompF1: Experimental Algorithm Parallelization
CompF2: Theoretical Calculations & Simulation
CompF3: Machine Learning
CompF4: Storage & processing resource access
CompF5: End user analysis
CompF6: Quantum computing
CompF7: Reinterpretation and long-term preservation of data and code
Contributing to Snowmass

- It is still very much possible to contribute to the Snowmass process!
- The key products of Snowmass are the white papers and the reports
 - white paper deadline is **15 March 2022**
 - although anyone can contribute white papers on topics of their specific interest, we strongly encourage broad community collaboration
 - you are strongly encouraged to contact the conveners of the relevant working group(s) to learn how they would prefer to organize white papers
 - you can also consult the *letters of intent* that were submitted to Computational Frontier back in 2020
 - the report writing process will also vary by working group
Overall Computational Frontier

- **Main scope is computation in the next 10 years**
 - so not quite computation as needed for new HEP experiments, although we have considered that
- **Work is primarily happening in working groups (see remainder of slides)**
 - **liaisons** to various other frontiers to help bridge gaps
- **Discussions via:**
 - Slack channels
 - Email lists (given at [this link](#))
 - Instructions to sign up [here](#)
- **Worth looking at the CompF workshop, August 2020: contributions & plans from various working groups**
- **Inputs that can help drive concrete funding recommendations are especially welcome**

Conveners: Steve Gottlieb, Daniel Elvira, Ben Nachman
web page
• Focus on parallelization of computation for experiments
• Means a lot of different things
 – use of parallel accelerators e.g. GPU
 – high performance vs high throughput computing environments
 – partitioning of single event computations across nodes (e.g. handling a DUNE supernova event?)
 – portability & longevity of solutions, ease of programming
• Broad range of communities and toolkits represented here
 – Geant4, accelerator modeling, perturbative calculation tools, event generators, lattice QCD, cosmological simulations...

• Therefore also a broad range of needs
 – maintaining support of broadly-used libraries, retaining key personnel
 – parallelization + improved efficiency
 – scaling to latest HPC
 – domain-specific issues (improved systematics, data volumes ...)
• Covers many topics in machine learning
 - innovative applications of ML (generative models, anomaly detection, differentiable programming, ...)
 - interpretability and validation
 - tools, ecosystem, and implementation in HEP software (firmware, hardware ... ?)
 - resources for model training (cloud, HPC, ...) and evaluation
• How to provide storage and CPU for central processing workflows & end user analysis
 - different storage technologies: latency vs capacity
 - what mix of CPU + accelerators + memory + specialized architectures?
 - network connections, data transfer
 - “topology” of services (edge services, analysis facilities, content delivery networks...)
 - who provides? HEP-specific facilities, university and lab clusters, national HPC centers, commercial providers?

Storage and Processing Resource Access
Conveners: Wahid Bhimji, Rob Gardner, Frank Wuerthwein
web page
Covers topics related to how physicists access and process data for final analysis

- centralized analysis facilities vs user hardware
- data access & bookkeeping
- programming languages, ecosystems, working environments
- analysis libraries, data storage formats
- “real-time” analysis
- collaborative software
• Most speculative topic of the working groups
 - many aspects still theoretical or have only very simple proofs of principle
 - can expect acceleration of capability in the near future

• Discussing:
 - quantum algorithms for HEP (quantum simulation, parton showering, quantum machine learning ...)
 - form of required quantum computing hardware & best access model

• Not directly discussing quantum sensing (although there can be overlaps)
Maximize reusability of data and analysis code

- Public data releases and curation: HepData, likelihoods, simplified analysis data, ...
- Combining results across experiments
- Archiving and rerunning analyses, possibly with different signals

What infrastructure needs to be provided? How can overhead on physicists be lowered?
Summary

- Snowmass process is ongoing, aiming for reports and a Community Summer Study in 2022
- Still lots of scope to contribute to process via white papers and engagement in the working groups
 - white papers targeted for mid-March
- Computational Frontier covers a very broad range of topics
 - from the prosaic to the speculative
 - has a home for your contribution – talk to the conveners