Imprint of quark flavor violating SUSY in h(125) decays at ILC

K. Hidaka Tokyo Gakugei University

Collaboration with H. Eberl, E. Ginina (HEPHY Vienna)

References:

Phys. Rev. D 91 (2015) 015007 [arXiv:1411.2840 [hep-ph]]

JHEP 1606 (2016) 143 [arXiv:1604.02366 [hep-ph]]

IJMP A34 (2019) 1950120 [arXiv:1812.08010 [hep-ph]]

ILCX2021, 27 Oct. 2021, KEK

1. Introduction

- What is the SM-like Higgs boson discovered at LHC?
- It can be the SM Higgs boson.
- It can be a Higgs boson of New Physics.
- This is one of the most important issues in the present particle physics field!
- Here we study a possibility that it is the lightest Higgs boson h^0 of the Minimal Supersymmetric Standard Model (MSSM), focusing on the decays $h^0(125) \rightarrow c \ \overline{c}$, $b \ \overline{b}$, $b \ \overline{s}$, $\gamma \gamma$, $g \ g$.

2. MSSM with QFV

Key parameters in this study are:

- * QFV parameters: $\tilde{c}_{L/R} \tilde{t}_{L/R}$ & $\tilde{s}_{L/R} \tilde{b}_{L/R}$ mixing parameters
- * QFC parameter: $\tilde{t}_L \tilde{t}_R \& \tilde{b}_L \tilde{b}_R$ mixing parameters

$$M^2_{O23} = (\tilde{c}_L - \tilde{t}_L \text{ mixing parameter})$$

$$M^2_{U23} = (\tilde{c}_R - \tilde{t}_R \text{ mixing parameter})$$

$$M^2_{D23} = (\tilde{s}_R - \tilde{b}_R \text{ mixing parameter})$$

$$T_{U23} = (\tilde{c}_R - \tilde{t}_L \text{ mixing parameter})$$

$$T_{U32} = (\tilde{c}_L - \tilde{t}_R mixing parameter)$$

$$T_{U33} = (\tilde{t}_L - \tilde{t}_R mixing parameter)$$

$$T_{D23} = (\tilde{s}_R - \tilde{b}_L \text{ mixing parameter})$$

$$T_{D32} = (\tilde{s}_L - \tilde{b}_R mixing parameter)$$

$$T_{D33} = (\tilde{b}_L - \tilde{b}_R \text{ mixing parameter})$$

3. Constraints on the MSSM

We respect the following experimental and theoretical constraints:

- (1) The recent LHC limits on the masses of squarks, sleptons, gluino, charginos and neutralinos.
- (2) The constraint on $(m_{A/H^+}, \tan \beta)$ from recent MSSM Higgs boson search at LHC.
- (3) The constraints on the QFV parameters from the B & K meson data.

$$B(b \rightarrow s \gamma)$$
 ΔM_{Bs} $B(B_s \rightarrow \mu^+ \mu^-)$ $B(B_u^+ \rightarrow \tau^+ \nu)$ etc.

- (4) The constraints from the observed Higgs boson mass and couplings at LHC; e.g. $121.6 \text{ GeV} < \text{m}_h^0 < 128.6 \text{ GeV}$ (allowing for theoretical uncertainty), $0.71 < \kappa_b < 1.43$ (ATLAS), $0.56 < \kappa_b < 1.70$ (CMS)
- (5) The experimental limit on SUSY contributions to the electroweak ρ parameter $\Delta \rho$ (SUSY) < 0.0012.
- (6) Theoretical constraints from the vacuum stability conditions for the trilinear couplings $T_{U\alpha\beta}$ and $T_{D\alpha\beta}$.

4. Parameter scan for $h^0 \rightarrow c c$, b b, b s

- We compute the decay widths $\Gamma(h^0 \to c \ \overline{c})$, $\Gamma(h^0 \to b \ \overline{b})$, and $\Gamma(h^0 \to b \ \overline{s})$ at full 1-loop level in the MSSM with QFV.
- We take parameter scan ranges as follows:

```
10 < tan \beta < 80

2500 < M_3 < 5000 \ GeV

100 < M_2 < 2500 \ GeV

100 < M_1 < 2500 \ GeV

100 < \mu < 2500 \ GeV

1350 < m_A(pole) < 6000 \ GeV
```

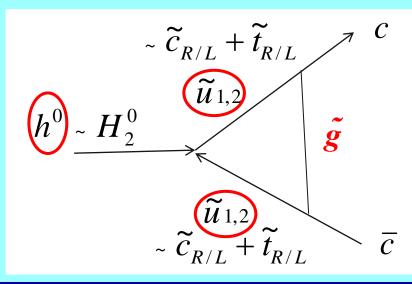
etc. etc.

 $1 TeV < M_{SUSY} < 5 TeV$

- In the parameter scan, all of the relevant experimental and theoretical constraints are imposed.
- 377180 parameter points are generated and 3208 points survive the constraints.

5. $h^0 \rightarrow c c$, b b, b s in the MSSM

- We compute the decay widths $\Gamma(h^0 \to c \ c\overline{)}$, $\Gamma(h^0 \to b \ b\overline{)}$, and $\Gamma(h^0 \to b \ s\overline{)}$ at full 1-loop level in the DRbar renormalization scheme in the MSSM with QFV.
- Main 1-loop correction to $h^0 \rightarrow c \ \overline{c}$:


```
gluino - su loops [ su = (\tilde{t} - \tilde{c} \text{ mixture})] can be enhanced by large trilinear couplings T_{U23}, T_{U32}, T_{U33}
```

- Main 1-loop corrections to $h^0 \rightarrow b \ \overline{b} \ \& \ b \ \overline{s}$:

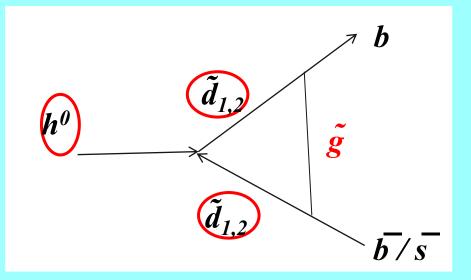
```
gluino – sd loops [ sd = (\tilde{b} - \tilde{s} \ mixture)] can be enhanced by large trilinear couplings T_{D23}, T_{D32}, T_{D33} chargino – su loops [ su = (\tilde{t} - \tilde{c} \ mixture)] can be enhanced by large trilinear couplings T_{U23}, T_{U32}, T_{U33}
```

In large $\tilde{c}_{R/L} - \tilde{t}_{R/L} \& \tilde{t}_L - \tilde{t}_R$ mixing scenario;

$$h^0 \sim H_2^0$$
 $\widetilde{u}_{1,2} \sim \widetilde{c}_{R/L} + \widetilde{t}_{R/L}$

In our scenario, "trilinear couplings" ($\tilde{c}_R - \tilde{t}_L - H_2^0$, $\tilde{c}_L - \tilde{t}_R - H_2^0$, $\tilde{t}_L - \tilde{t}_R - H_2^0$ couplings) = ($T_{U23} T_{U32}$, T_{U33}) are large!

 $\widetilde{u}_{1,2} - \widetilde{u}_{1,2} - h^0$ couplings are large!


Gluino loop contributions can be large!

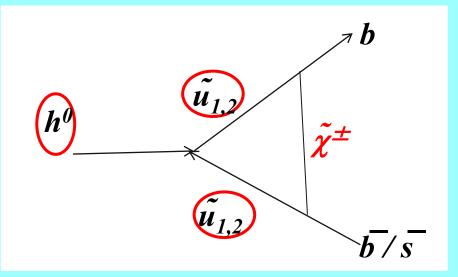
Deviation of $\Gamma(h^0 \to c \ \overline{c})$ from SM width can be large!

In large $\tilde{s}_{R/L}$ - $\tilde{b}_{R/L}$ & \tilde{b}_L - \tilde{b}_R mixing scenario;

$$h^{\theta} \sim -s\alpha H_{1}^{\theta} + c\alpha H_{2}^{\theta}$$

$$\tilde{d}_{1,2} \sim \tilde{s}_{R/L} + \tilde{b}_{R/L}$$

In our scenario, "trilinear couplings" $(T_{D23} T_{D32}, T_{D33}) = (\tilde{s}_R - \tilde{b}_L - H_1^0, \tilde{s}_L - \tilde{b}_R - H_1^0, \tilde{b}_L - \tilde{b}_R - H_1^0 \text{ couplings) are large!}$


 $\tilde{d}_{1,2}$ - $\tilde{d}_{1,2}$ - h^0 couplings are large!

Gluino loop contributions can be large!

Deviation of $\Gamma(h^0 \to b \ b\overline{/s})$ from SM width can be large!

In large $\tilde{c}_{R/L}$ - $\tilde{t}_{R/L}$ & \tilde{t}_L - \tilde{t}_R mixing scenario;

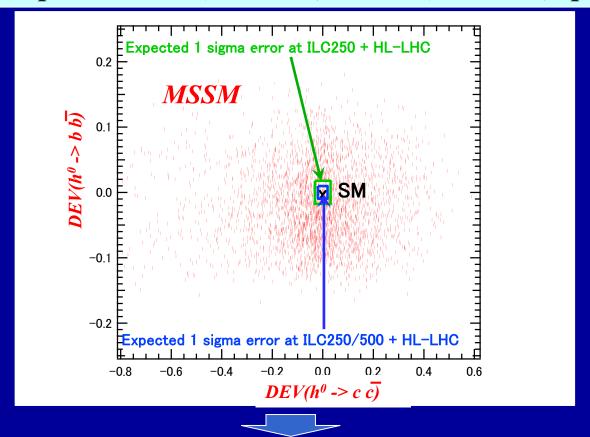
$$\begin{split} h^0 &\sim H_2^0 \\ \tilde{u}_{1,2} &\sim \tilde{c}_{R/L} + \tilde{t}_{R/L} \\ \tilde{\chi}^{\pm} &\sim \tilde{W}^{\pm} + \tilde{H}^{\pm} \end{split}$$

In our scenario, "trilinear couplings" $(\tilde{c}_R - \tilde{t}_L - H_2^0, \tilde{c}_L - \tilde{t}_R - H_2^0, \tilde{t}_L - \tilde{t}_R - H_2^0)$ couplings) = $(T_{U23} T_{U32}, T_{U33})$ are large!

 $\overline{\widetilde{u}_{1,2}} - \overline{\widetilde{u}_{1,2}} - h^0$ couplings are large!

Chargino loop contributions can be large!

Deviation of $\Gamma(h^0 \to b \ b\overline{/s})$ from SM width can be large!


5.1 Deviation of the width from the SM prediction

- The deviation of the width from the SM prediction:

$$\overline{DEV(h^{\theta} \rightarrow XX)} = \Gamma(h^{\theta} \rightarrow XX)_{MSSM} / \Gamma(h^{\theta} \rightarrow XX)_{SM} - 1$$

$$X = c, b$$

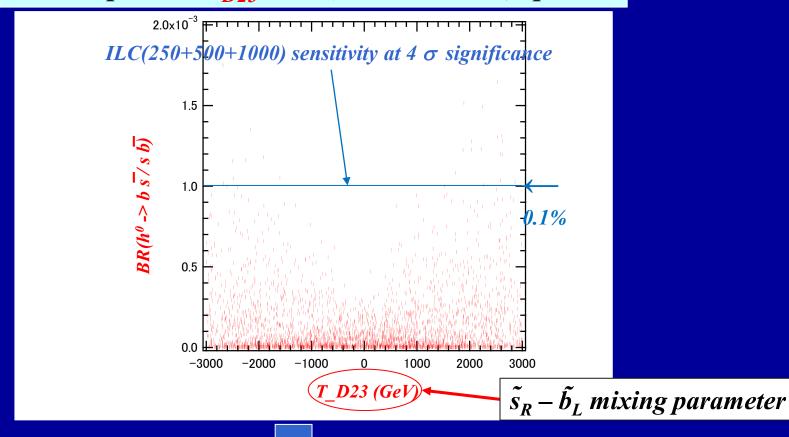
Scatter plot in $DEV(h^0 \rightarrow c \ \overline{c}) - DEV(h^0 \rightarrow b \ \overline{b})$ plane

- $DEV(h^0 \rightarrow c \ \overline{c})$ and $DEV(h^0 \rightarrow b \ \overline{b})$ can be very large simultaneously!: $DEV(h^0 \rightarrow c \ \overline{c})$ can be as large as $\sim \pm 60\%$. $DEV(h^0 \rightarrow b \ \overline{b})$ can be as large as $\sim \pm 20\%$.

- ILC can observe such large deviations from SM at high significance (arXiv:1908.11299)!: $\triangle DEV(h^0 -> c\ \overline{c}) = (3.60\%, 2.40\%, 1.58\%)$ at (ILC250, ILC500, ILC1000) $\triangle DEV(h^0 -> b\ \overline{b}) = (1.98\%, 1.16\%, 0.94\%)$ at (ILC250, ILC500, ILC1000)

$5.2 \ \underline{BR(h^0 \rightarrow b \ \overline{s}/s \ b)}$

$$BR(h^0 \rightarrow b \ \overline{s}/s \ \overline{b}) \cong 0 \ (SM)$$


 $BR(h^0 \rightarrow b \ \overline{s}/s \ \overline{b})$ can be as large as $\sim 0.17\%$ (MSSM with QFV)!

(See also Gomez-Heinemeyer-Rehman, PR D93 (2016) 095021 [arXiv:1511.04342].)

ILC(250+500+1000) sensitivity could be $\sim 0.1\%$ (at 4 σ significance)!

Private communication with Junping Tian; See also Barducci et al., JHEP 12 (2017) 105 [arXiv:1710.06657].

Scatter plot in T_{D23} - $BR(h^0 \rightarrow b \ s/s \ b)$ plane

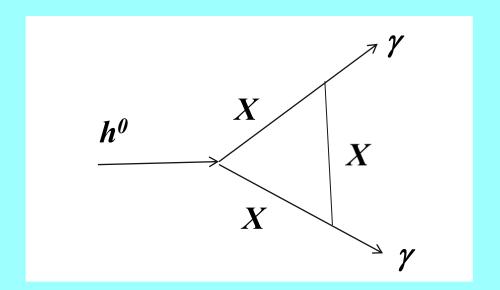
- -There is a strong correlation between T_{D23} $BR(h^0 -> b \ \overline{s}/s \ \overline{b})!$
- $BR(h^0 \rightarrow b \ \overline{s}/s \ \overline{b})$ can be as large as 0.17% for large T_{D23} !
- ILC(250 + 500 + 1000) sensitivity could be ~ 0.1% at 4 sigma significance!

 Private communication with Junping Tian;
 See also Barducci et al., JHEP 12 (2017) 105 [arXiv:1710.06657].
- LHC & HL-LHC sensitivity should not be so good due to huge QCD BG!

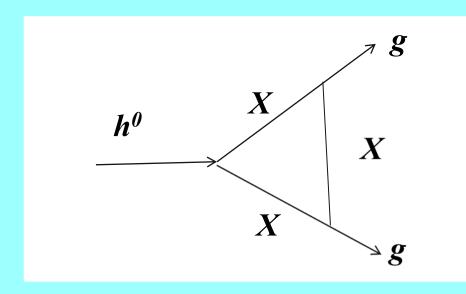
6. $h^0 \rightarrow \gamma \gamma$, g g in the MSSM

- As the h decays to photon photon and gluon gluon are loop-induced decays, these decays are very sensitive to New Physics!
- We compute the widths $\Gamma(h^0 \to \gamma \gamma)$ and $\Gamma(h^0 \to g g)$ at NLO QCD level in the MSSM with QFV.
- Main 1-loop contributions to $h^0 \rightarrow \gamma \gamma$:

```
[W^+/top\ quark/su] - loops\ [su = (\tilde{t} - \tilde{c}\ mixture)]
```

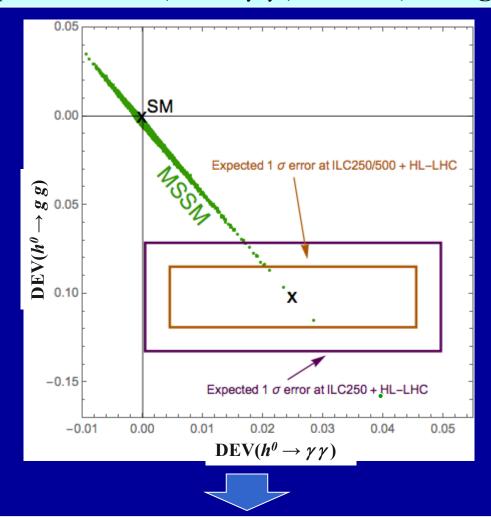

The su-loops can be enhanced by large trilinear couplings T_{U23} , T_{U32} , T_{U33} , resulting in sizable deviation of $\Gamma(h^0 \to \gamma \gamma)$ from the SM width!

- Main 1-loop contributions to $h^0 \rightarrow g g$:


```
[top quark/su] - loops [ su = (\tilde{t} - \tilde{c} \text{ mixture})]
```

The su-loops can be enhanced by large trilinear couplings T_{U23} , T_{U32} , T_{U33} , resulting in sizable deviation of $\Gamma(h^0 \to g g)$ from the SM width!

$$X = W^+ / t / \tilde{u}_{1,2}$$



$$X = t / \tilde{u}_{1,2}$$

- We perform a MSSM parameter scan respecting all the relevant theoretical and experimental constraints.
- From the parameter scan, we find the followings:
- (1) DEV($h^{\theta} \to \gamma \gamma$) and DEV($h^{\theta} \to g g$) can be sizable simultaneously: DEV($h^{\theta} \to \gamma \gamma$) can be as large as ~ + 4%, DEV($h^{\theta} \to g g$) can be as large as ~ -15%.
- (2) There is a very strong correlation between $DEV(h^0 \to \gamma \gamma)$ and $DEV(h^0 \to g g)$. This correlation is due to the fact that the stop-loop (stop-scharm mixture loop) contributions dominate the two DEVs.
- (3) The deviation of the width ratio $\Gamma(h^0 \to \gamma \gamma) / \Gamma(h^0 \to g g)$ in the MSSM from the SM value can be as large as $\sim +20\%$.

Scatter plot in DEV($h^{\theta} \rightarrow \gamma \gamma$) - DEV($h^{\theta} \rightarrow g g$) plane

- DEV($h^{\theta} \rightarrow \gamma \gamma$) and DEV($h^{\theta} \rightarrow g g$) can be sizable simultaneously!
- -There is a strong correlation between DEV($h^0 \rightarrow \gamma \gamma$) and DEV($h^0 \rightarrow g g$)!
- ILC can observe such large deviations from SM at high significance (arXiv:1908.11299)!

7. Conclusion

- We have studied the decays h^0 (125GeV) $\rightarrow c \ \overline{c}$, $b \ \overline{b}$, $b \ \overline{s}$, $\gamma \gamma$, $g \ g$ in the MSSM with QFV.
- Performing a systematic MSSM parameter scan respecting all of the relevant theoretical and experimental constraints, we have found the followings:
 - * $DEV(h^0 \rightarrow c \ \overline{c})$ and $DEV(h^0 \rightarrow b \ \overline{b})$ can be very large simultaneously! : $DEV(h^0 \rightarrow c \ \overline{c})$ can be as large as $\sim \pm 60\%$, $DEV(h^0 \rightarrow b \ \overline{b})$ can be as large as $\sim \pm 20\%$.
 - * The deviation of the width ratio $\Gamma(h^0 \rightarrow b \ b) / \Gamma(h^0 \rightarrow c \ c)$ from the SM value can exceed $\sim +100\%$.
 - * $BR(h^0 \rightarrow b \ \overline{s}/s \ \overline{b})$ can be as large as ~ 0.17%! ILC(250 + 500 + 1000) sensitivity could be ~ 0.1% at 4 sigma signal significance!

- * $DEV(h^0 \rightarrow \gamma \gamma)$ and $DEV(h^0 \rightarrow g g)$ can be sizable simultaneously! : $DEV(h^0 \rightarrow \gamma \gamma)$ can be as large as $\sim +4\%$, $DEV(h^0 \rightarrow g g)$ can be as large as $\sim -15\%$.
- * The deviation of the width ratio $\Gamma(h^0 -> \gamma \gamma)/\Gamma(h^0 -> g g)$ from the SM value can be as large as $\sim +20\%$.
- * There is a very strong correlation between $DEV(h^{\theta} \rightarrow \gamma \gamma)$ and $DEV(h^{\theta} \rightarrow g g)$. This correlation is due to the fact that the stop-loop (stop-scharm mixture loop) contributions dominate the two DEVs.
- All of these large deviations in the h^0 (125) decays are due to large \tilde{c} \tilde{t} mixing & large \tilde{c} / \tilde{t} involved trilinear couplings T_{U23} , T_{U32} , T_{U33} and large \tilde{s} \tilde{b} mixing & large \tilde{s} / \tilde{b} involved trilinear couplings T_{D23} , T_{D32} , T_{D33} .
- ILC can observe such large deviations from SM at high significance!
- In case the deviation pattern shown here is really observed at ILC, then it would strongly suggest the discovery of QFV SUSY (MSSM with QFV)!
- See next slide also.

- Our analysis suggests the following:

PETRA/TRISTAN e- e+ collider discovered virtual Z^0 effect for the first time.

Later, CERN p p collider discovered the Z⁰ boson.

Similarly, ILC could discover virtual Sparticle effects for the first time in $h^0(125)$ decays!

Later, FCC-hh p p collider could discover the Sparticles!

END

Thank you!

Backup Slides

2. MSSM with QFV

The basic parameters of the MSSM with QFV:

```
\{tan\beta, m_A, M_1, M_2, M_3, \mu, M^2_{Q,\alpha\beta}, M^2_{U,\alpha\beta}, M^2_{D,\alpha\beta}, T_{U\alpha\beta}, T_{D\alpha\beta}\}
  (at Q = 1 TeV scale) (\alpha, \beta = 1, 2, 3 = u, c, t \text{ or } d, s, b)
tan\beta: ratio of VEV of the two Higgs doublets <H^0_2>/<H^0_1>
m<sub>A</sub>: CP odd Higgs boson mass (pole mass)
M_1, M_2, M_3: U(1), SU(2), SU(3) gaugino masses
             higgsino mass parameter
\mu:
M^2_{O,\alpha\beta}: left squark soft mass matrix
M^2_{U\alpha\beta}: right up-type squark soft mass matrix
M^2_{D\alpha\beta}: right down-type squark soft mass matrix
T_{Ulphaeta}: trilinear coupling matrix of up-type squark and Higgs boson
T<sub>Dαβ</sub>: trilinear coupling matrix of down-type squark and Higgs boson
```

2. Key parameters of MSSM

Key parameters in this study are:

```
* QFV parameters: M_{Q23}^2, M_{U23}^2, M_{D23}^2, T_{U23}, T_{U32}, T_{D23}, T_{D32}
```

* QFC parameter:
$$T_{U33}$$
, T_{D33}

$$M^2_{Q23} = (\tilde{c}_L - \tilde{t}_L \text{ mixing parameter})$$

$$M^2_{U23} = (\tilde{c}_R - \tilde{t}_R \text{ mixing parameter})$$

$$M_{D23}^2 = (\tilde{s}_R - \tilde{b}_R \text{ mixing parameter})$$

$$T_{U23} = (\tilde{c}_R - \tilde{t}_L \text{ mixing parameter})$$

$$T_{U32} = (\tilde{c}_L - \tilde{t}_R \text{ mixing parameter})$$

$$T_{U33} = (\tilde{t}_L - \tilde{t}_R \text{ mixing parameter})$$

$$T_{D23} = (\tilde{s}_R - \tilde{b}_L \text{ mixing parameter})$$

$$T_{D32} = (\tilde{s}_L - \tilde{b}_R \text{ mixing parameter})$$

$$T_{D33} = (\tilde{b}_L - \tilde{b}_R \text{ mixing parameter})$$

4. Parameter scan for $h^0 \rightarrow cc, bb, bs$ in the MSSM

- We compute the decay widths $\Gamma(h^0 \to c \ c\overline{)}$, $\Gamma(h^0 \to b \ b\overline{)}$, and $\Gamma(h^0 \to b \ s\overline{)}$ at full 1-loop level in the MSSM with QFV.
- Parameter points are generated by using random numbers in the following ranges (in units of GeV or GeV^2):

$$1 TeV < M_{SUSY} < 5 TeV$$

```
10 < tan \beta < 80

2500 < M_3 < 5000

100 < M_2 < 2500

100 < M_1 < 2500

(without assuming the GUT relation for M_1, M_2, M_3)

100 < \mu < 2500

1350 < m_A(pole) < 6000;
```

<=== *QFV* param.

<=== *OFV* param.

- In the parameter scan, all of the relevant experimental and theoretical constraints are imposed.
- 377180 parameter points are generated and 3208 points survive the constraints.

Table 1: Scanned ranges and fixed values of the MSSM parameters (in units of GeV or GeV^2 , except for $\tan \beta$). The parameters that are not shown explicitly are taken to be zero. $M_{1,2,3}$ are the U(1), SU(2), SU(3) gaugino mass parameters.

$\tan \beta$	M_1	M_2	M_3	μ	$m_A(pole)$
10 ÷ 80	$100 \div 2500$	$100 \div 2500$	$2500 \div 5000$	$100 \div 2500$	$1350 \div 6000$
M_{Q22}^{2}	M_{Q33}^{2}	$ M_{Q23}^{2} $	M_{U22}^{2}	M_{U33}^{2}	$ M_{U23}^2 $
$2500^2 \div 4000^2$	$2500^2 \div 4000^2$	$< 1000^{2}$	$1000^2 \div 4000^2$	$600^2 \div 3000^2$	$< 2000^2$
M_{D22}^2	M_{D33}^{2}	$ M_{D23}^2 $	$ T_{U23} $	$ T_{U32} $	$ T_{U33} $
$2500^2 \div 4000^2$	$1000^2 \div 3000^2$	$< 2000^2$	< 4000	< 4000	< 5000
$ T_{D23} $	$ T_{D32} $	$ T_{D33} $	$ T_{E33} $		
< 3000	< 3000	< 4000	< 500		

M_{Q11}^2	M_{U11}^2	M_{D11}^2	M_{L11}^2	M_{L22}^2	M_{L33}^2	M_{E11}^2	M_{E22}^2	M_{E33}^2
4500^{2}	4500^{2}	4500^{2}	1500^{2}	1500^{2}	1500^{2}	1500^{2}	1500^{2}	1500^{2}

Constraints on the MSSM parameters from K & B meson and h⁰ data:

Table 5: Constraints on the MSSM parameters from the K- and B-meson data relevant mainly for the mixing between the second and the third generations of squarks and from the data on the h^0 mass and couplings κ_b , κ_g , κ_γ . The fourth column shows constraints at 95% CL obtained by combining the experimental error quadratically with the theoretical uncertainty, except for $B(K_L^0 \to \pi^0 \nu \bar{\nu})$, m_{h^0} and $\kappa_{b,g,\gamma}$.

$ \begin{array}{ c c c c c c }\hline & 10^3 \times \epsilon_K \\ 10^{15} \times \Delta M_K \ [\text{GeV}] \\ 10^9 \times \text{B}(K_L^0 \to \pi^0 \nu \bar{\nu}) \\ 10^{10} \times \text{B}(K_L^0 \to \pi^0 \nu \bar{\nu}) \\ 10^{10} \times \text{B}(K_L^0 \to \pi^+ \nu \bar{\nu}) \\ & \Delta M_{B_s} \ [\text{ps}^{-1}] \\ 10^4 \times \text{B}(b \to s \gamma) \\ & 10^6 \times \text{B}(b \to s l^+ l^-) \\ & (l = e \text{ or } \mu) \\ 10^9 \times \text{B}(B_s^0 \to \mu^+ \mu^-) \\ 10^4 \times \text{B}(B^+ \to \tau^+ \nu \bar{\nu}) \\ & \kappa_b \\ & \kappa_b \\ & \kappa_g \\$	Observable	Exp. data	Theor. uncertainty	Constr. (95%CL)
κ_{γ} 1.00 ± 0.12 (95% CL) [50] 1.07 ^{+0.27} _{-0.29} (95% CL) [51] 1.00 ± 0.12 (ATLAS) 1.07 ^{+0.27} _{-0.29} (CMS)	$10^{3} \times \epsilon_{K} $ $10^{15} \times \Delta M_{K} [\text{GeV}]$ $10^{9} \times B(K_{L}^{0} \to \pi^{0} \nu \bar{\nu})$ $10^{10} \times B(K^{+} \to \pi^{+} \nu \bar{\nu})$ $\Delta M_{B_{s}} [\text{ps}^{-1}]$ $10^{4} \times B(b \to s\gamma)$ $10^{6} \times B(b \to s \ l^{+}l^{-})$ $(l = e \text{ or } \mu)$ $10^{9} \times B(B_{s} \to \mu^{+}\mu^{-})$ $10^{4} \times B(B^{+} \to \tau^{+}\nu)$ $m_{h^{0}} [\text{GeV}]$ κ_{b}	$\begin{array}{c} 2.228 \pm 0.011 \; (68\% \; \mathrm{CL}) \; [21] \\ 3.484 \pm 0.006 \; (68\% \; \mathrm{CL}) \; [21] \\ < 3.0 \; (90\% \; \mathrm{CL}) \; [21] \\ 1.7 \pm 1.1 \; (68\% \; \mathrm{CL}) \; [21] \\ 17.757 \pm 0.021 \; (68\% \; \mathrm{CL}) \; [21,41] \\ 3.32 \pm 0.15 \; (68\% \; \mathrm{CL}) \; [21,41] \\ 1.60 ^{+0.48}_{-0.45} \; (68\% \; \mathrm{CL}) \; [43] \\ \\ 2.69 ^{+0.37}_{-0.35} \; (68\% \; \mathrm{CL}) \; [43] \\ \\ 2.69 ^{+0.37}_{-0.35} \; (68\% \; \mathrm{CL}) \; [45] \\ 1.06 \pm 0.19 \; (68\% \; \mathrm{CL}) \; [41] \\ 125.09 \pm 0.24 \; (68\% \; \mathrm{CL}) \; [48] \\ 1.06 ^{+0.37}_{-0.35} \; (95\% \; \mathrm{CL}) \; [50] \\ 1.17 ^{+0.53}_{-0.61} \; (95\% \; \mathrm{CL}) \; [51] \\ 1.03 ^{+0.14}_{-0.12} \; (95\% \; \mathrm{CL}) \; [50] \\ 1.18 ^{+0.31}_{-0.27} \; (95\% \; \mathrm{CL}) \; [51] \\ 1.00 \pm 0.12 \; (95\% \; \mathrm{CL}) \; [50] \\ \end{array}$	±0.28 (68% CL) [40] ±1.2 (68% CL) [40] ±0.002 (68% CL) [21] ±0.04 (68% CL) [21] ±2.7 (68% CL) [42] ±0.23 (68% CL) [41] ±0.11 (68% CL) [44] ±0.23 (68% CL) [46] ±0.29 (68% CL) [47]	$\begin{array}{c} 2.228 \pm 0.549 \\ 3.484 \pm 2.352 \\ < 3.0 \ (90\% \ \text{CL}) \\ 1.7^{+2.16}_{-1.70} \\ 17.757 \pm 5.29 \\ 3.32 \pm 0.54 \\ 1.60 ^{+0.97}_{-0.91} \\ \\ 2.69 ^{+0.85}_{-0.82} \\ 1.06 \pm 0.69 \\ 125.09 \pm 3.48 \\ 1.06^{+0.37}_{-0.35} \ (\text{ATLAS}) \\ 1.17^{+0.53}_{-0.61} \ (\text{CMS}) \\ 1.03^{+0.14}_{-0.12} \ (\text{ATLAS}) \\ 1.18^{+0.31}_{-0.27} \ (\text{CMS}) \\ 1.00 \pm 0.12 \ (\text{ATLAS}) \\ \end{array}$

Main SUSY one-loop contributions to $h^0 \rightarrow c \overline{c}$

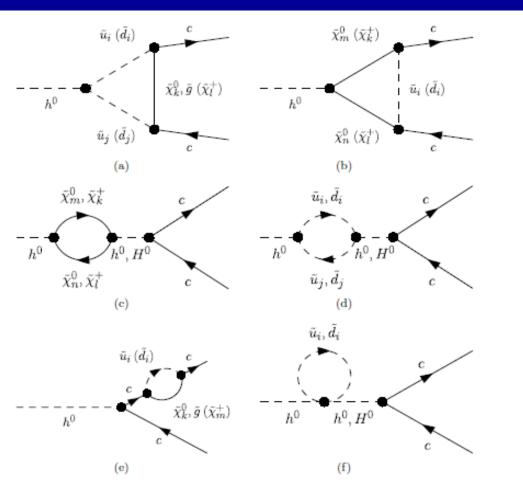
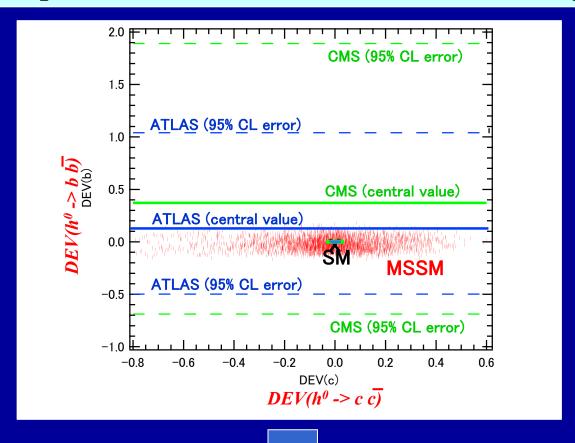



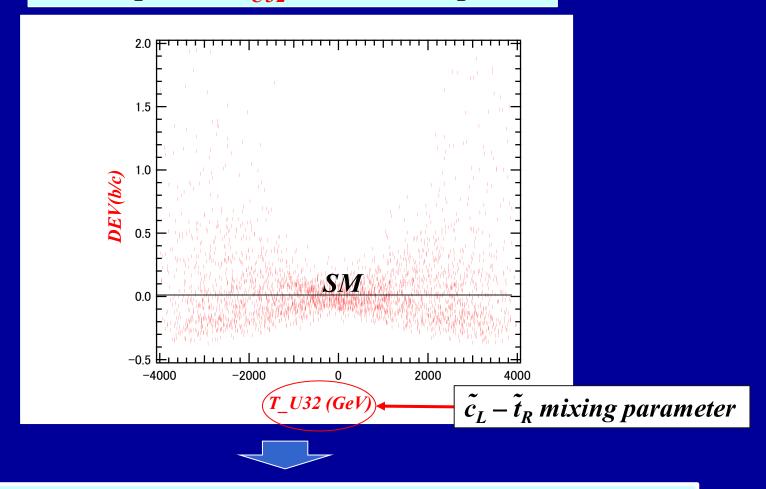
Figure 2: The main one-loop contributions with SUSY particles in $h^0 \to c\bar{c}$. The corresponding diagram to (e) with the self-energy contribution to the other charm quark is not shown explicitly.

Scatter plot in $DEV(h^0 \rightarrow c \ \overline{c}) - DEV(h^0 \rightarrow b \ \overline{b})$ plane

- Recent LHC data:

$$DEV(h^0 \rightarrow b \ b\overline{)} = 0.12 + 0.92 / -0.62 = [-0.50, 1.04] \ (ATLA \ S) \ (arXiv:1909.02845) \ DEV(h^0 \rightarrow b \ b) = 0.37 + 1.52 / -1.06 = [-0.69, 1.89] \ (CMS) \ (arXiv:1809.10733)$$

- Both SM and MSSM are consistent with the recent ATLAS/CMS data! The errors of the recent ATLAS/CMS data are too large!


5.2 Deviation of width ratio from the SM prediction

- The deviation of the width ratio from the SM prediction:

$$DEV(b/c) = [\Gamma(b) / \Gamma(c)]_{MSSM} / [\Gamma(b) / \Gamma(c)]_{SM} - 1$$

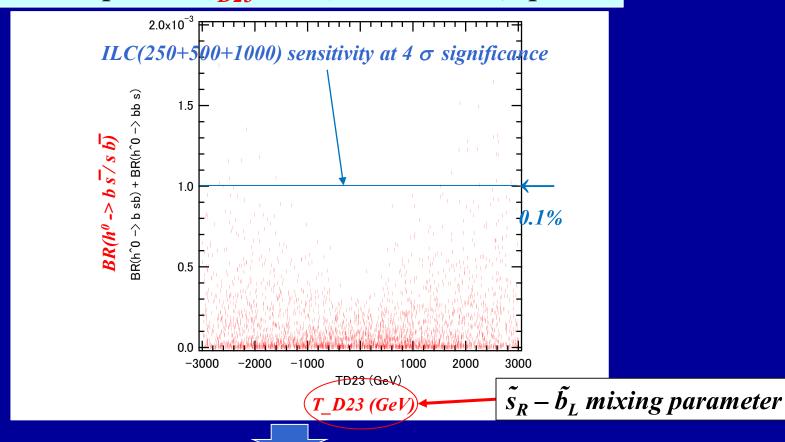
$$\Gamma(X) = \Gamma(h^0 -> XX)$$

Scatter plot in T_{U32} – DEV(b/c) plane

- -There is a strong correlation between T_{U32} DEV(b/c)!
- DEV(b/c) can be as large as $\sim +200\%$ for large T_{U32} !

$5.2 \ \underline{BR(h^0 \rightarrow b \ \overline{s}/s \ b)}$

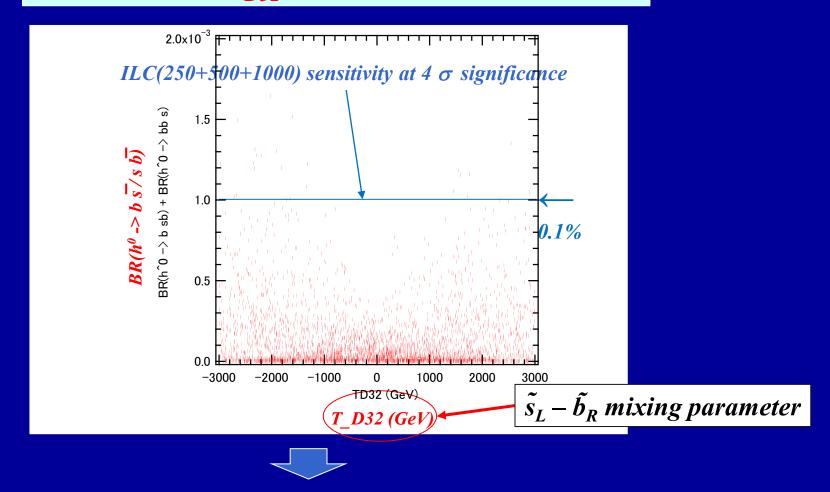
$$BR(h^0 \rightarrow b \ \overline{s}/s \ \overline{b}) \cong 0 \ (SM)$$


 $BR(h^0 \rightarrow b \ \overline{s}/s \ b)$ can be as large as $\sim 0.17\%$ (MSSM with QFV)!

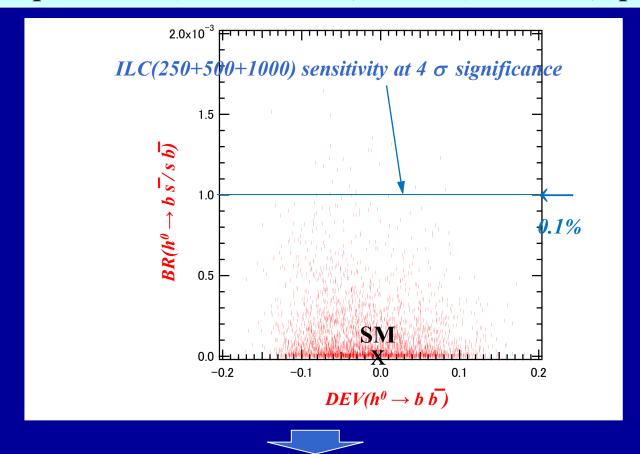
(See also Gomez-Heinemeyer-Rehman, PR D93 (2016) 095021 [arXiv:1511.04342].)

ILC(250+500+1000) sensitivity could be $\sim 0.1\%$ (at 4 σ significance)!

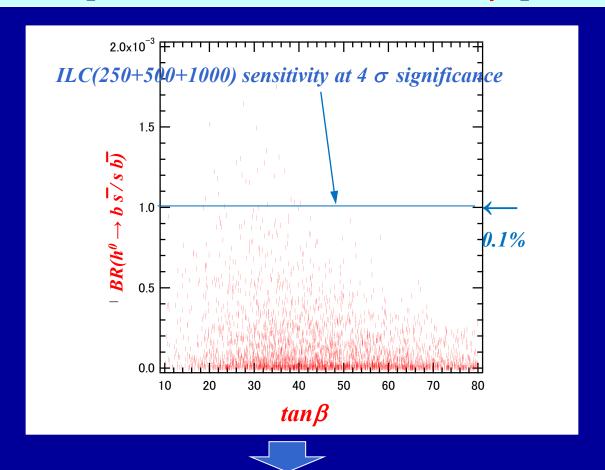
Private communication with Junping Tian; See also Barducci et al., JHEP 12 (2017) 105 [arXiv:1710.06657]


Scatter plot in T_{D23} - $BR(h^0 \rightarrow b \ s/s \ b)$ plane

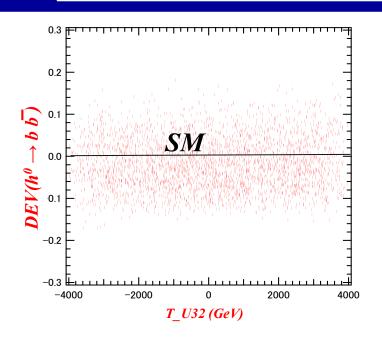
- -There is a strong correlation between T_{D23} $BR(h^0 \rightarrow b \ \overline{s}/s \ \overline{b})!$
- $BR(h^0 \rightarrow b \ \overline{s}/s \ \overline{b})$ can be as large as 0.17% for large T_{D23} !
- ILC(250 + 500 + 1000) sensitivity could be ~ 0.1% at 4 sigma significance!

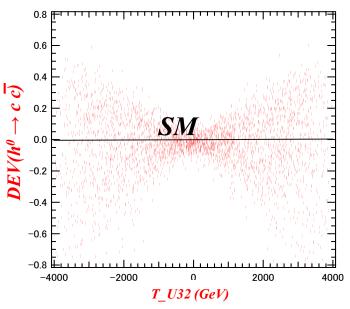

 Private communication with Junping Tian;
 See also Barducci et al., JHEP 12 (2017) 105 [arXiv:1710.06657].
- LHC & HL-LHC sensitivity should not be so good due to huge QCD BG!

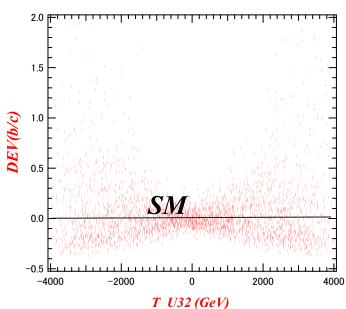
Scatter plot in T_{D32} - $BR(h^0 \rightarrow b \ \overline{s}/s \ \overline{b})$ plane


- There is also a strong correlation between T_{D32} $BR(h^0 -> b \ \overline{s}/s \ \overline{b})!$
- $BR(h^0 \rightarrow b \ \overline{s}/s \ \overline{b})$ can be as large as 0.17% for large T_{D32} !

Scatter plot in $BR(h^0 \rightarrow b \ \overline{s}/s \ \overline{b}) - DEV(h^0 \rightarrow b \ \overline{b})$ plane

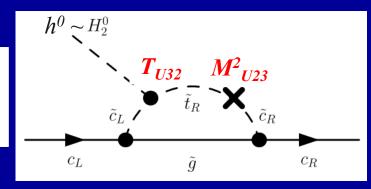

- There is a strong correlation between $DEV(h^0 \rightarrow b \ \overline{b})$ & $BR(h^0 \rightarrow b \ \overline{s}/s \ \overline{b})$!
- This is due to the fact that $DEV(h^0 \to b \ \overline{b})$ & $BR(h^0 \to b \ \overline{s}/s \ \overline{b})$ have a common origin of enhancement effect, i.e. large trilinear couplings $T_{D23,32,33}$ & $T_{U23,32,33}$.


Scatter plot in $BR(h^0 \rightarrow b \ \overline{s/s} \ \overline{b)}$ - $tan\beta$ plane



- There is a strong correlation between $BR(h^0 \rightarrow b \ \overline{s}/s \ \overline{b})$ & $tan\beta$!
- $BR(h^0 \rightarrow b \ \overline{s}/s \ \overline{b})$ can be as large as 0.17% for $\tan \beta \sim 30$!

Caveat for very large $DEV(h^0 \rightarrow c \ \overline{c})$ & DEV(b/c)

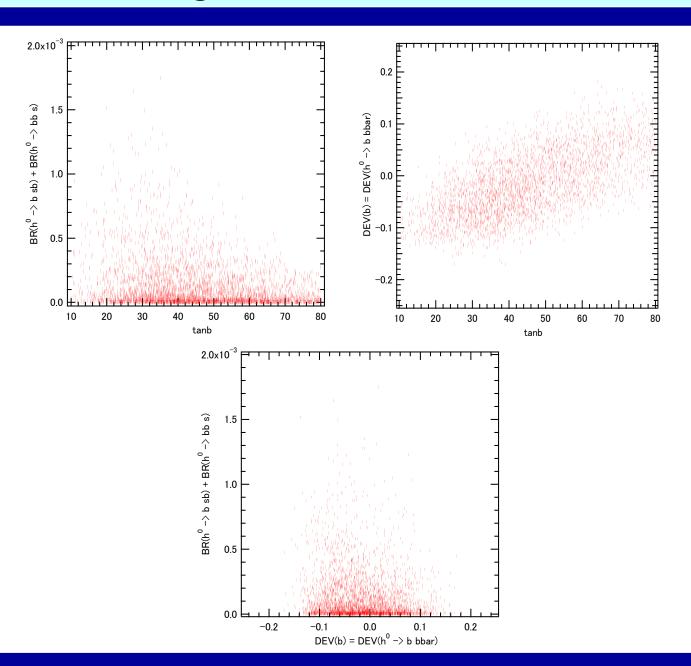


Caveat for very large $DEV(h^0 \rightarrow c \ c)$ & DEV(b/c)

Gluino loop contribution to $h^0 \to c \ \bar{c}$ can be very large (positive and negative) for large $T_{U32} * M^2_{U23}!$

The interference term between the tree diagram and the gluino one-loop diagram can be very large (positive and negative) for large $T_{U32}*M^2_{U23}$, which can lead to even NEGATIVE width $\Gamma(h^0 \to c \ \overline{c})$ at one-loop level!

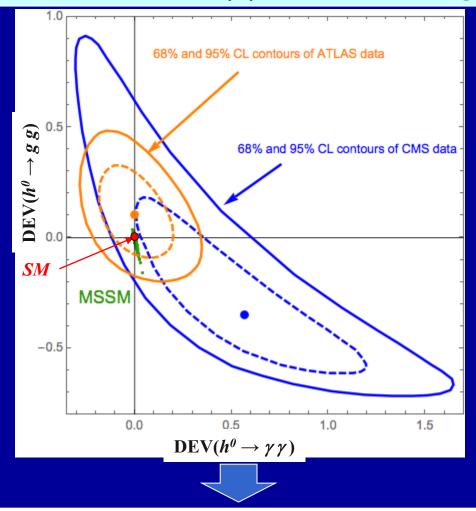
In this case perturbation theory breaks down!



A large deviation of $\Gamma(h^0 \to c \ c)$ from the SM value is in principle possible due to large values of the product $T_{U32}*M^2_{U23}$.

Since there exists no physical constraint on this product, the deviation $DEV(h^0 \to c \ \overline{c})$ can be unnaturally large. So, we show only the results with a deviation from the SM up to $\sim +/-60\%$.

Correlations among $DEV(h^0 \rightarrow b \ \overline{b})$, $BR(h^0 \rightarrow b \ \overline{s}/s \ \overline{b})$, $tan\beta$

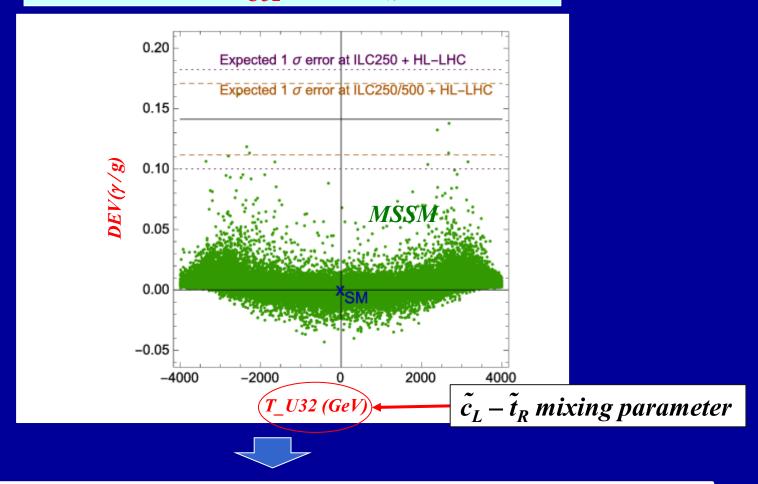


Effect of Resummation of the bottom Yukawa coupling at large tan \beta

As for $\Gamma(h^0 \to b \ \overline{b})$ & $\Gamma(h^0 \to b \ \overline{s}/s \ \overline{b})$, we have considered the large $\tan \beta$ enhancement and the resummation of the bottom Yukawa coupling [1]. It turns out, however, that in our case with large m_A close to the decoupling Higgs limit, the resummation effect (Δ_b effect) is very small (< 0.1%).

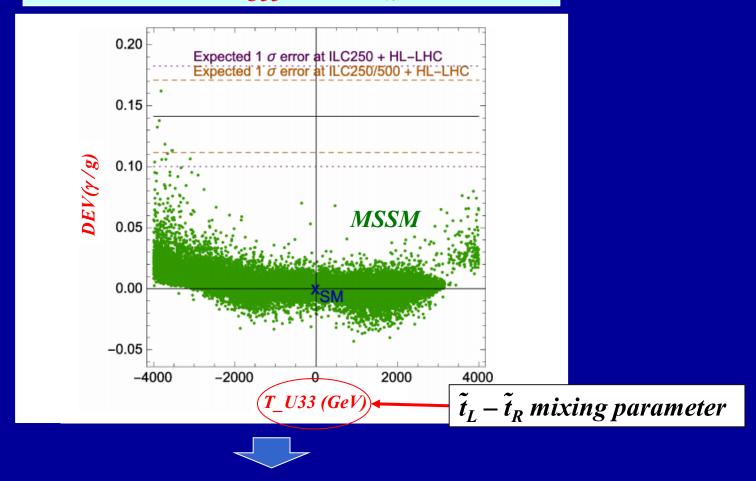
[1] M. Carena et al., Nucl. Phys. B 577 (2000) 88 [hep-ph/9912516].

Scatter plot in DEV($h^{\theta} \rightarrow \gamma \gamma$) - DEV($h^{\theta} \rightarrow g g$) plane


- Both SM and MSSM are consistent with the recent ATLAS/CMS data!:

ATLAS: arXiv:1909.02845 (Phys.Rev.D 101 (2020) 012002)

CMS: arXiv:1804.02716 (JHEP 11 (2018) 185)


- The errors of the recent ATLAS/CMS data are too large!

Scatter plot in T_{U32} – $DEV(\gamma/g)$ plane

- -There is a strong correlation between T_{U32} $DEV(\gamma/g)$!
- $DEV(\gamma/g)$ can be as large as $\sim +15\%$ for large T_{U32} !

Scatter plot in T_{U33} – $DEV(\gamma/g)$ plane

- -There is a strong correlation between T_{U33} $DEV(\gamma/g)$!
- DEV(γ/g) can be as large as $\sim +16\%$ for large T_{U33} !