Asian Physics and Software meeting 2021.4.30

- Status reports:
 - Try to generate ZH->µµbbbb sample at 250 GeV.
 - Go to next page.

ZH->μμφφ->μμbbbb at 250 GeV

- Target:
 - BR(H->φφ)
 - To apply b-jet kinematic fitter
- Setup:
 - WHIZARD 2.8.5
 - mφ: 15, 20, 30, 40, 50, 60 [GeV]
 - 20,000 events for each $m\phi,$ polarization
 - mc-2020, √s = 250 GeV
 - rv02-02-01.sv02-02-01.mILD_I5_o1_v02.E250(_SetA)
- Status:
 - Test of 1st sample generation was done.
 - Generate whizard sample based on ILC Analysis Workthrough
 - Simulate with DDSim, Reconstruct with MarlinStdReco
 - Thanks to Miyamoto-san, Ono-san, Daniel, Junping
 - Some check of generator setups for consistency with mc-2020
 - Mass of s/c/b is set to 0 GeV.
 - All the particles except higgs are polarized.
 - BS/ISR/FSR settings: (\$circe2_file = "/home/ilc/tianjp/generator/PostDBD/whizard2/250_SetA_ee024.circe")
 - Default mass cut, and so on.

How the WIMP can be detected at ILC?

S. Matsumoto(Kavli IPMU), ILC summer camp 2020

WHIZARD µµbbbb

2021/4/30

ZH->μμφφ->μμbbbb at 250 GeV

- Questions for WHZARD:
 - Which model should we use for this process?
 - mc-2020: SM_CKM
 - 1st test: 2HDM_UFO <u>https://feynrules.irmp.ucl.ac.be/wiki/2HDM</u>
 - We use "h2" as φ.
 - Default THDM_CKM is similar to SM_CKM, but H0->bb is not available.
 - In mc-2020, why the b-quark mass appears as a few GeV even if we set "mb=0" in the input sindarin?
 - I understand that the decay of higgs is described by PYTHIA in mc-2020.
 - Currently I describe this process as follows; process mumubbbb = "e-", "e+" => "mu+", "mu-", "h2", "h2" { \$restrictions = "3+4~Z && 5+6~h1" } process h2dec = h2 => "b", "b~"
 - Are there any other points to check?

• How the WIMP can be detected at ILC?

Mediator φ is feebly interacting with SM particles except the Higgs boson, so that it is efficiently detected by observing the exotic Higgs decay!!
 Mediator φ is feebly interacting with SM particles except the Higgs boson, so that it is efficiently detected by observing the exotic Higgs decay!!
 Mediator φ is feebly interacting with SM particles except the Higgs boson, so that it is efficiently detected by observing the exotic Higgs decay!!
 Mediator φ is feebly interacting with SM particles except the Higgs boson, so that it is efficiently detected by observing the exotic Higgs decay!!
 Mediator φ is feebly interacting with SM particles except the Higgs boson, so that it is efficiently detected by observing the exotic Higgs decay!!
 Mediator φ is feebly interacting with SM particles except the Higgs boson, so that it is efficiently detected by observing the exotic Higgs decay!!
 Mediator φ is feebly interacting with SM particles except the Higgs boson, so that it is efficiently detected by observing the exotic Higgs decay!!
 Mediator φ is feebly interacting with SM particles except the Higgs boson, so that it is efficiently detected by observing the exotic Higgs decay!!
 Mediator φ is feebly observing the exotic Higgs decay!!

S. Matsumoto(Kavli IPMU), ILC summer camp 2020

WHIZARD µµbbbb Fig. 12. The 95% C.L. upper limit on selected Higgs exotic decay branching fractions at HL-LHC, CEPC, ILC and FCC-ee. The benchmark parameter choices are the same as in Table |3. We put several vertical lines in this figure to divide different types of Higgs exotic decays.

2021/4/30

backup

b クォーク間の角度

cosxb: φ->2b Entries m10 10³ m20 m30 10² m40 m50 10 m60 1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 -1 0 cosxb

クォーク間の角度が小さい領域
 -> vertex 2つのジェットになる
 -> まずは LCFIPlus が効果的か
 ・ (double b-tag も可能性あり)

- 候補: m15, 20, 30, 40, 50, 60, (62.5, 11)
 - ・m10 だと Bハドロンが4つできない
 - 優先度
 - {30}, {15,60}, {のこり}

b クォーク間の角度

cosxybmin: 親が異なるbのペアで角度が最小のもの

(参考) cosxy: φ(35), φ(36) の間の角度

• m60 でも LCFIPlus による分離が期待できる

Test of χ^2 and degrees of freedom

- Fast simulation
 - 1. Generate pseudo samples of ZH -> 4 particles which parameters {E, θ , ϕ } have Gaussian errors; $\sigma_E = 1$ [GeV], $\sigma_{\theta} = 0.1$ [rad.], $\sigma_{\phi} = 0.1$ [rad.]
 - 2. Perform the kinematic fit under the 4 jets assumption which parameter errors are Gaussian above.
 - 3. Estimate the degrees of freedom from the χ^2 distribution when each constraint is applied;

4C: Energy momentum, 5C: Energy momentum & Higgs mass, 1C: Energy

Results: fit probability

The χ^2 distributions show that the d.o.f. equals the number of constraints. Our kinematic fitter evaluates the χ^2 output correctly in the simplest case.

2021/4/30

Yu Kato

2021/4/30

Yu Kato

2021/4/30

Yu Kato

Setup of kinematic fit for e⁺e⁻ -> ZH -> µµbb

Fit Objects:

- JetFitObject (JFO) x 2
 - parameter: (Ε, θ, φ) with b-jet resolution
 E: Crystal Ball, θ: Gaus, φ: Gaus
 - mass^{fit} ≡ E^{fit}/E^{meas.} x mass^{meas.}
 - Resolutions are adjusted by (E, cosθ) for each jet
- MuonFitObject (MFO) x 2
 - parameter: (Pt, θ, φ) with Gaussian error from track parameters
- ISRPhotonFitObject
 - parameter: Pz ($E_{max} = 31.5 \text{ GeV}$)

$$\mathcal{P}\left(p_{\mathbf{z},\gamma}\right) = \frac{\beta}{2E_{\max}} \cdot \left|\frac{p_{\mathbf{z},\gamma}}{E_{\max}}\right|^{\beta-1} \quad \beta = \frac{2\alpha}{\pi} \left(\ln\frac{s}{m_{\mathrm{e}}^2} - \frac{1}{m_{\mathrm{e}}^2}\right)^{\beta-1}$$

March 17, 2021

Constraints:

- Hard:
 - Total Energy/Px/Py/Pz for all FOs
 - Higgs mass = 125 GeV for 2 JFOs
- Soft:
 - Z mass w/ Breit-Wigner for 2 MFOs with mean 91.2 GeV and width 2.5 GeV

