

Interests in the Top quark physics

- Top quark?
 - Most massive elementary particle so far discovered
 - with a mass $\sim 173~GeV$
 - strong coupling to Higgs boson
 - many BSM particles strongly couple with top quark
- Studying top quark
 - Precision test of pQCD, EWK
 - Many BSM searches from top production, properties and decay
 - Important background for a lot of LHC searches

LHC is a Top-factory

- In the LHC-Run2 (2015-2018)
 - 140 fb⁻¹ × 832 pb ~ 1.2 x 10⁸ $t\bar{t}$ pairs were already produced

- The goal: precision test of SM and BSM searches using huge $t\bar{t}$ sample
 - allow to measure very rare SM processes

Top quark production at the LHC

Pair production through QCD

- gluon-gluon fusion: 90%@I3TeV
- $q\bar{q}$ annihilation: I0%@I3TeV
- $\sigma_{t\bar{t}} \sim 832 \text{ pb} (\text{NNLO+NNLL}) @ 13 \text{ TeV}$

Single top production

• EW production

t-ch

Wt-ch

s-ch

Many rare production

TopLHC K.Kawade

2021/5/12

4

Top quark signal

• Top quark decay to W+b ($V_{tb} \sim 1$)

- Final state objects
 - High- p_T leptons or/and quark jets
 - Neutrino

 \Rightarrow Can be detected as large Missing E_T (MET)

- b-jets
 - b-tagging
- Top jet (boosted top)
 - top tagging

Resolved

Boosted

production cross-section measurements

$t\bar{t}$ production cross-section measurements

- Can precisely test pQCD
- Measurements have been performed in the various CMS-energy/final-state

2021/5/12

$\sigma_{t\bar{t}}$ measurement in $e\mu$ final state

- Why *eµ* ?
 - Cleanest channel
 - $ee/\mu\mu$: Need to care Z-boson+jets background
- Event selections
 - Opposite charged $e\mu$ pair
 - Same charged pair for fake estimation
 - I or 2 b-tagged jets
- Extract cross-section and ϵ_b simultaneously
 - ϵ_b ; b-tagging efficiency, dominant source of unc.
 - Use following equations

$$N_{1} = L\sigma_{t\bar{t}} \epsilon_{e\mu} 2\epsilon_{b}(1 - C_{b}\epsilon_{b}) + N_{1}^{bkg}$$

$$N_{2} = L\sigma_{t\bar{t}} \epsilon_{e\mu} C_{b}\epsilon_{b}^{2} + N_{2}^{bkg}$$
estimate from MC

$$\sigma_{t\bar{t}} = 826.4 \pm \frac{\text{stat}}{3.6 \pm 11.5 \pm 15.7 \pm 1.9} \text{ pb},$$

2.4% total uncertainty

TopLHC K.Kawade

2021/5/12

8

PHYS. REV. D 103, 052008 (2021) Eur. Phys. J. C (2019) 79:1028 JHEP01(2021)033

Differential cross-sections

- Differential cross sections can be used to test SM predictions and MC generators
 - Precision measurements are sensitive to new physics
- A lot of measurement have been performed
- Some tension between data and MC are observed
 - Significant over-prediction of $\sigma_{t\bar{t}}$ at higher p_T^{\dagger} (also N_{jets} and $p_{T,tt}$)
 - Better models are needed to reproduce the data well

9

top mass measurements

Mass of the top quark

- The measured m_{h} and m_{t} are at the boundary between stable and metastable
 - $\Rightarrow \delta m_h \approx 0.2 \text{ GeV} (\text{Recent LHC status})$
 - m_t measurement is becoming more important
- What is the mass of top quark?
 - MC mass? m_t^{MC}
 - Pole mass? m_t^{pole}
- How to measure them?
 - Direct measurement; m_t^{MC}
 - Reconstruct from top decay objects
 - Indirect measurement; m_t^{pole}
 - Extract from measured cross-section

Best $\delta m_t^{MC} \sim 0.5 \text{GeV}$ (Run-I comb.)

ATLAS+CMS Preliminary LHC <i>top</i> WG	m _{top} from cross-section measurements Sep 2019
total sta	$m_{top} \pm tot (stat \pm syst \pm theo)$ Ref.
σ(tī) inclusive, NNLO+NNLL	172 0 ^{+2.5}
CMS, 7+8 TeV	172.3 -2.6 [1] 173.8 -1.8 [2]
CMS, 13 TeV	169.9 $^{+1.9}_{-2.1}$ (0.1±1.5 $^{+1.2}_{-1.5}$) [3]
ATLAS, 13 TeV	→ 173.1 ^{+2.0} [4]
σ(tī+1j) differential, NLO ATLAS, 7 TeV	- 173.7 ^{+2.3} (1.5 ± 1.4 ^{+1.0} _{-0.5}) [5]
CMS, 8 TeV	
ATLAS, 8 TeV	171.1 $^{+1.2}_{-1.0}$ (0.4 ± 0.9 $^{+0.7}_{-0.3}$) [7]
σ (tī) n-differential, NLO ATLAS, n=1, 8 TeV ⊢	173.2 ± 1.6 (0.9 ± 0.8 ± 1.2) [8]
CMS, n=3, 13 TeV	170.9 ± 0.8 [9]
m _{top} from top quark decay CMS, 7+8 TeV comb. [10] ATLAS, 7+8 TeV comb. [11] 55 160 165 170	[1] EP4C 74 (2014) 3109 [8] .HEP 10 (2015) 121 [9] #XXX1904.05237 (2019) [2] .HEP 06 (2016) 025 [8] CM&P-AS-TOX-13006 [10] PHD 98 (2016) 07204 [9] EP4C 78 (2019) 386 [7] #XX1056.2020 (2011) [11] EP4C 78 (2016) 07204 [4] ATLAS-CONF-2019-01 [8] (2P4C 77 (2017) 84 [4] ATLAS-2019-2019-01 [8] (2P4C 77 (2017) 84 [4] ATLAS-2019-2019-2019-2019 [8] (2P4C 77 (2017) 84 [4] ATLAS-2019-2019-2019-2019-2019-2019-2019-2019

TopLHC K.Kawade

Direct measurement

- Reconstruct m_t from decay objects
 - Assignment of observed jets
 - Jet energy scale (JES) calibration is the key
- Using W boson mass to reduce JES uncertainties
- Results

lep+jets ch $m_{\star}^{\text{hyb}} = 172.25 \pm 0.08 \,(\text{stat+JSF}) \pm 0.62 \,(\text{syst}) \,\text{GeV},$ $JSF^{hyb} = 0.996 \pm 0.001 \text{ (stat)} \pm 0.008 \text{ (syst)}.$ all-had ch

 $m_{\rm t}^{\rm hyb} = 172.34 \pm 0.20 \,({\rm stat+JSF}) \pm 0.70 \,({\rm syst}) \,{\rm GeV},$ $\text{ISF}^{\text{hyb}} = 0.997 \pm 0.002 \,(\text{stat}) \pm 0.007 \,(\text{syst}).$

Combination

 $172.26 \pm 0.07 (\text{stat+JSF}) \pm 0.61 (\text{syst}) \text{ GeV}.$

Permutations

Data/MC

m_t^{pole} measurement

- $\sigma_{t\bar{t}}$ is sensitive to m_t^{pole}
 - Differential cross-section $d\sigma_{t\bar{t}}/dX$ has better sensitivity
 - But... there are a lot of parameter sensitive to $\sigma_{t\bar{t}}$ \rightarrow PDF, α_s , m_t^{pole} , etc
- ✓ Simultaneous measurement of PDF, α_s , m_t^{pole} from triple-differential cross section
 - as a function of N_{jets}, m_{tt} and y_{tt} $d^3\sigma_{t\bar{t}}/dN_{jets}dm_{t\bar{t}}dy_{t\bar{t}}$
- Most precise determination of m_t^{pole}

 $m_{\rm t}^{\rm pole} = 170.5 \pm 0.8 \,{\rm GeV}$

Running of the top quark mass

In $\overline{\rm MS}$ scheme, the value of m_t depends on energy scale ($\propto m_{tt})$

– Like α_s

 \rightarrow running of $m_t(\mu_m)$ $\mu^2 \frac{\mathrm{d}m(\mu)}{\mathrm{d}\mu^2} = -\gamma(\alpha_S(\mu)) m(\mu),$

- Differential cross section as a function of m_{tt}
- Running factor extracted by comparing to NLO predictions
- The extracted running is found to be compatible with the scale dependence
 - no-running hypothesis is excluded at 95% C.L.
- The running is probed up to ${\rm \tilde{~}I\,TeV}$

ATLAS-CONF-2019-038

Top decay width

- Top decay width; One of the fundamental properties of the top quark
 - Direct measurement from m_{lb}
 m_{lb}: Invariant mass of charged lepton and bottom quark in top decays

 \Leftrightarrow Indirect measurement: $\Gamma_t = 1.36 \pm 0.02(\text{stat})^{+0.14}_{-0.11}(\text{syst})$ GeV

- Could hint
 - non-SM decay channels of the top quark
 - modification of top-quark couplings

W⁺

top-Higgs coupling

a big milestone @ LHC

Phys.Lett.B 784 (2018) 173-191

++H

• Direct probe of top-Higgs coupling

- One of the primary target in LHC physics
- Covered various Higgs and top pair decay modes
 - Machine Learning based analysis
- Observation (ex of ATLAS)
 - 5.8 σ significance @ Run2
 - 6.3σ significance @ Run I + Run 2

Uncertainty source	$\Delta \sigma_{t\bar{t}H}/\sigma_{t\bar{t}H}$ [%]			
Theory uncertainties (modelling)	11.9			
$t\bar{t}$ + heavy flavour	9.9			
tīH	6.0			
Non- <i>ttH</i> Higgs boson production	1.5			
Other background processes	2.2			
Experimental uncertainties	9.3			
Fake leptons	5.2			
Jets, E ^{miss}	4.9			
Electrons, photons	3.2			
Luminosity	3.0			
τ -leptons	2.5			
Flavour tagging	1.8			
MC statistical uncertainties	4.4			

2021/5/12

Rare top quark processes

SM rare process

- Is the SM still correct in extreme phase space?
 - Can be tested in rare SM process

Ex)

- $t\bar{t}bb, t\bar{t}X, t\bar{t}t\bar{t}$
 - Very rare SM processes
 - Can be measured thanks to huge LHC data
 - Important backgrounds for future BSM searches
- FCNC
 - Not sensitive at the LHC
 - If BSM exist, possible enhance

Phys. Rev. D 99, 072009

 $C_V^{SM} = T^3 - 2Q_t \sin^2(\theta_W)$

 $\gamma^{\mu}(C_V^{SM} - \gamma_5 C_A^{SM})$

 $C_A^{SM} = T^3$

tt+X production

- Associate production with Vector bosons or photon
 - − very rare σ_{ttX}^{SM} < 1 pb (⇔ σ_{tt}^{SM} ~1 nb)
 - LHC has more ttX than tt at Tevatron
 - important to ttH, VLQ, SUSY searches

+++Z

- Sensitive neutral current coupling between t and Z
- Sensitive EFT operator related to tZ coupling
- BSM can alter cross-section
- $++\gamma$
 - Sensitive to t γ electroweak coupling
- +++W
 - Having Same sign lepton pair final state
 - Very rare for SM processes
 - Important final state in the many BSM searches

Status of tt+X

TopLHC K.Kawade

2021/5/12

Four tops; *ttttt*

- $\sigma_{\rm SM}^{t\bar{t}t\bar{t}} \sim 12 \text{ fb} \rightarrow \text{Extremely rare process}$
 - CP properties of the Yukawa coupling
 - Many BSM enhance four tops

- Event selection
 - same-sign lepton pair
 - or

at least three leptons

- BDT employed to separate signal and backgrounds
 - ex) Jet multiplicity, jet flavor and event kinematics

gluino

23

Results; *tttt*

- Signal and backgrounds normalizations are determined by likelihood fit
 - to the BDT
- Uncertainties
 - Signal modelling
 - cross-section
 - modelling
 - ttW modelling
 - Statistical unc.
- Measured cross-section is

 $\sigma_{t\bar{t}t\bar{t}} = 24 \pm 5(\text{stat}) {}^{+5}_{-4}(\text{syst}) \text{ fb} = 24 {}^{+7}_{-6} \text{ fb}.$

Standard Model expectation of $\sigma_{t\bar{t}t\bar{t}} = 12.0 \pm 2.4$ fb.

FCNC

- Flavor-Changing Neutral Current
 - Strongly suppressed in the SM (10^{-14})
 - BSM can enhance BR

Process	\mathbf{SM}	$2 \mathrm{HDM}(\mathrm{FV})$	2HDM(FC)	MSSM	RPV	\mathbf{RS}	t→Hc
$t \rightarrow Zu$	7×10^{-17}	_	_	$\leq 10^{-7}$	$\leq 10^{-6}$	_	1 //10
$t \to Zc$	1×10^{-14}	$\leq 10^{-6}$	$\leq 10^{-10}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-5}$	t→Hu
$t \to g u$	4×10^{-14}	—	—	$\leq 10^{-7}$	$\leq 10^{-6}$	—	t→γc
$t \to gc$	5×10^{-12}	$\leq 10^{-4}$	$\leq 10^{-8}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-10}$	
$t ightarrow \gamma u$	4×10^{-16}	—	—	$\leq 10^{-8}$	$\leq 10^{-9}$	—	t→γu
$t\to \gamma c$	5×10^{-14}	$\leq 10^{-7}$	$\leq 10^{-9}$	$\leq 10^{-8}$	$\leq 10^{-9}$	$\leq 10^{-9}$	t→gc
t ightarrow hu	2×10^{-17}	$6 imes 10^{-6}$	—	$\leq 10^{-5}$	$\leq 10^{-9}$	—	t sou
$t \to hc$	3×10^{-15}	2×10^{-3}	$\le 10^{-5}$	$\leq 10^{-5}$	$\leq 10^{-9}$	$\leq 10^{-4}$	ı→yu

Approaching from production and decay

Prospects;

HL-LHC improve factor 4 [see ATL-PHYS-PUB-2019-001]

2021/5/12

Summary

- Various top quark measurements have been performed
 - Only small part are showed in this talk…
- SM still powerful to describe ۲ top production in the wider range
- Systematic already became dominant uncertainties
 - Improve modelling —
 - Improve analysis
- A lot of analysis is ongoing, ۲ Stay tune
- Hope synergy between LHC lacksquareand ILC in top physics

Top Quark Production Cross Section Measurements

Status: November 2020