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Higgs boson
Let there be light

High resolution channel despite the small branching ratio (0.23% @ 125.09 GeV). 
Diphoton events fall in exclusive ttH, VH, VBF and untagged categories, and 
an unbinned combined maximum likelihood fit is applied on mγγ
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What is my

production mode?

H → ZZ has high resolution and large S/B. An 
event categorization is performed based on the 
different production modes (number of leptons, 
jets, b-jets and MET) and ME based discriminants 
sensitive to signal and background kinematics
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7 exclusive categories

for the main Higgs production modes

CMS-HIG-16-041
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Standard Model of particle physics is complete!



Beyond the 

Standard Model

• data say there are at least five missing 
pieces in the SM

• dark matter (2003)


• neutrino mass (1998)


• dark energy (1998)


• inflation (2003)


• matter anti-matter asymmetry (2003)

What is the next energy scale?
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What is Higgs boson really?

What is the next energy scale?
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Introduction Higgs to invisible

Caterina Doglioni - 2019/05/13 - European Strategy Update

Comparison to direct detectionBSM scalar mediator

Higgs portal, plot for direct searches
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• Limits on BR can be translated to 
limits in the DM-nucleon plane 
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Caveat: EFT validity 
in Higgs-DM 

interaction not 
guaranteed beyond 

HL-LHC

e+e–

HL-LHCChinese Physics C Vol. 41, No. 6 (2017) 063102

(bb̄)(⌧+
⌧
�), (⌧+

⌧
�)(⌧+

⌧
�), (jj)(��), and (��)(��) de-

cay channels. For a decay topology of h ! 2 ! 3 ! 4
where intermediate resonances are involved, we choose
the lightest stable particle mass to be 10 GeV, the mass
splitting to be 40 GeV and the intermediate resonance
mass to be 10 GeV, which applies to (bb̄)+/ET, (jj)+/ET,
(⌧+

⌧
�)+/ET. For a decay topology of h! 2! (1+3), we

choose the lightest stable particle mass to be 10 GeV and
the mass splitting to be 40 GeV, which applies to bb̄+/ET,

jj+ /ET, ⌧+
⌧
�+ /ET. For the Higgs invisible decays, we

take the best limits in the running scenario ECFA16-S2
amongst the Zh associated production and VBF search
channels [12–14].

For the Higgs invisible decays at lepton colliders, we
quote the limits from current studies [16–18]. These lim-
its do not depend on the invisible particle mass using the
recoil mass technique at lepton colliders.
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Fig. 12. The 95% C.L. upper limit on selected Higgs exotic decay branching fractions at HL-LHC, CEPC, ILC and
FCC-ee. The benchmark parameter choices are the same as in Table 3. We put several vertical lines in this figure
to divide di↵erent types of Higgs exotic decays.

From this summary in Table 3 and the correspond-
ing Fig. 12, we can clearly see the improvement in exotic
decays from the lepton collider Higgs factories. These
exotic Higgs decay channels are selected such that they
are hard to be constrained at the LHC but important for
probing BSM decays of the Higgs boson. The improve-
ments on the limits of the Higgs exotic decay branch-
ing fractions vary from one to four orders of magni-
tude for these channels. The lepton colliders can im-
prove the limits on the Higgs invisible decays beyond the
HL-LHC projection by one order of magnitude, reach-
ing the SM invisible decay branching fraction of 0.12%
from h ! ZZ

⇤
! ⌫⌫̄⌫⌫̄ [56]. For the Higgs exotic de-

cays into hadronic particle plus missing energy, (bb̄)+/

ET, (jj)+/ET and (⌧+
⌧
�)+/ET, the future lepton colliders

improve on the HL-LHC sensitivity for these channels by
roughly four orders of magnitude. This great advantage
benefits a lot from low QCD background and the Higgs
tagging from recoil mass technique at future lepton col-
liders. As for the Higgs exotic decays without missing
energy, the improvement varies between two to three or-
ders of magnitude, except for the one order of magnitude
improvement for the (��)(��) channel. Being able to re-
construct the Higgs mass from the final state particles
at the LHC does provide additional signal-background
discrimination power and hence the future lepton collid-
ers improvement on Higgs exotic decays without miss-

ing energy is less impressive than for those with missing
energy. Furthermore, as discussed earlier, leptons and
photons are relatively clean objects at the LHC and the
sensitivity at the LHC on these channels will be very
good. Future lepton colliders complement the HL-LHC
for hadronic channels and channels with missing ener-
gies.

There are many more investigations to be carried
out under the theme of Higgs exotic decays. For our
study, we take the cleanest channel of e+e� !ZH with
Z ! `

+
`
� and h !exotics up to four-body final state,

but further inclusion of the hadronic decaying spectator
Z-boson and even invisible decays of the Z-boson would
definitely improve the statistics and consequently result
in better limits. As a first attempt to evaluate the Higgs
exotic decay program at future lepton colliders, we do
not include the case of very light intermediate particles
whose decay products will be collimated, but postpone
this for future study when the detector performance is
more clearly defined. There are many more exotic Higgs
decay modes to consider, such as Higgs decaying to a
pair of intermediate particles with un-even masses [25],
Higgs CP property measurements from its decay di↵eren-
tial distributions [57–60], flavor violating decays, decays
to light quarks [61], decays into meta-stable particles,
and complementary Higgs exotic productions [62]. Our
work is a first systematic study evaluating the physics

063102-12
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beam 
dump

forward

off axis

light dark 
matter search?

nuclear 
physics?
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FIG. 1: Schematic experimental setup. A high-intensity
multi-GeV electron beam impinging on a beam dump pro-
duces a secondary beam of dark sector states. In the basic
setup, a small detector is placed downstream so that muons
and energetic neutrons are entirely ranged out. In the con-
crete example we consider, a scintillator detector is used to
study quasi-elastic �-nucleon scattering at momentum trans-
fers �> 140 MeV, well above radiological backgrounds, slow
neutrons, and noise. To improve sensitivity, additional shield-
ing or vetoes can be used to actively reduce cosmogenic and
other environmental backgrounds.

.
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FIG. 2: a) ��̄ pair production in electron-nucleus collisions
via the Cabibbo-Parisi radiative process (with A0 on- or o�-
shell) and b) � scattering o� a detector nucleus and liberating
a constituent nucleon. For the momentum transfers of inter-
est, the incoming � resolves the nuclear substructure, so the
typical reaction is quasi-elastic and nucleons will be ejected.

Figure 3: Schematic of the experimental setup. A high-intensity multi-GeV electron
beam impinging on a beam-dump produces a secondary beam of dark sector states. In
the basic setup, a small detector is placed downstream with respect to the beam-dump
so that muons and energetic neutrons are entirely ranged out.

e↵orts to search for dark photons independently of their connection to dark matter,
the success of these e↵orts relies on the assumption that the A

0 is the lightest particle
in its sector and that its primary decay channel only depends on ✏. Furthermore, if
the A

0 decays predominantly to SM particles, this explanation of the (g�2)µ anomaly
has been ruled out (see discussion in Sec. 5).

If, however, the A
0 couples to a light DM particle � (mA0 > m�), then the pa-

rameter space for reconciling theory and experiment with regard to (g � 2)µ remains
viable. For large values of ↵D, this explanation of the anomaly is under significant
tension with existing constraints, but for ↵D ⌧ ↵EM this explanation is still viable
and most of the remaining territory can be tested with BDX@JLab (see discussion in
Sec. 5).

In the remainder of this section, we review the salient features of LDM production
at an electron fixed-target facility. Secondly, we give an overview of the status of LDM
models parameter space, and the capabilities of present, and near future proposals
to make progress in the field. Finally, we highlight how BDX uniquely fits in this
developing field.

14

Figure 4. The sensitivity of NA64 to DarkPhotons with the full statistics collected in 2016 - 2018. Left
plot: in terms of the mixing strength ✏. Right plot: in terms of the variable y, assuming ↵D = 0.1 and
mA0 = 3m�, shown together with the predictions of some popular thermal Dark Matter models.

lengths shifting fiber read-out. Immediately after WCAL there is a veto counter V2, the
tracking detectors, the signal counter S4. They are followed by the ECAL that was used in
the invisible mode and the same detectors downstream of it (VETO and HCAL). The energy
of the e+e� pair is measured by the ECAL.

The candidate events were selected with the following criteria chosen to maximize the
acceptance of signal events and to minimize the number of background events, using both MC
simulation and data: (i) No energy deposition in the V2 counter exceeding about half of the
energy deposited by the minimum ionizing particle (MIP); (ii) The signal in the decay counter
S4 is consistent with two MIPs; (iii) The sum of energies deposited in the WCAL+ECAL is
equal to the beam energy within the energy resolution of these detectors. At least 25% of the
total energy should be deposited in the ECAL; (iv) The shower in the WCAL should start to
develop within a few first X0, which is ensured by the preshower part energy cut; (v) The cell
with maximal energy deposition in the ECAL should be (3,3) (vi) The lateral and longitudinal
shape of the shower in the ECAL are consistent with a single e-m one. This requirement does
not decrease the e�ciency to signal events because the distance between e� and e+ in the
ECAL is very small. The rejection of events with hadrons in the final state was based on the
VETO and/or the energy deposited in the HCAL.

In order to check various e�ciencies and the reliability of the MC simulations, we se-
lected a clean sample of ' 105 µ+µ� events with EWCAL < 0.6Ebeam originated from the
QED dimuon production in the dump. This rare process is dominated by the reaction
e�Z ! e�Z�; � ! µ+µ� of a hard bremsstrahlung photon conversion into the dimuon pair
on a dump nucleus. We performed various comparisons between these events and the corre-
sponding MC simulated sample, and applied the estimated e�ciency corrections to the MC
events. These corrections do not exceed 20%.

In order to further increase the sensitivity to short-living X bosons (higher ✏) the following
optimization steps were performed before the 2018 run: (i) Beam energy increased to 150
GeV (ii) Thinner counter V2 was prepared and installed immediately after the last tungsten
plate inside the WCAL box. In addition, the vacuum pipe was installed immediately after the
WCAL, the distance between the WCAL and ECAL was increased.
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ILC-250 (1 year)

ILC-250 (20 years)

γ + N → a + N

✓ An order of magnitude better sensitivity than other beam dump experiments

YS, D.Ueda arXiv: 2009.13790
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✓ Multiple scattering of electrons

✓ Axion production angle (iWW approximation)

✓ Photon decay angle
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higher energies
• main reason to go linear: extendable!


• 350GeV:  threshold


• 400GeV: open top


• 550GeV: 


• 1TeV: Higgs self coupling, vector boson scattering


• multi TeV: SUSY, extra dim, Z’, ….
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Hitoshi Murayama (UC Berkeley/U. Tokyo): Working group 3 Chair
Tatsuya Nakada (EPFL): Executive Board Chair and Working group 1 Chair
Yasuhiro Okada (KEK): KEK Liaison
Steinar Stapnes (CERN): Europe Liaison
Geoffrey Taylor (U. Melbourne): Asia-Pacific Liaison

Working group 2�
Accelerator

Working group 1�
Pre-lab set-up

Working group 3�
Physics & Detectors

Unlike LCB/LCC, ILC-IDT is focused on the ILC.
KEK provides administrative, logistic and some financial support. 

Scientific secretary: Tomohiko Tanabe (KEK)
Communication team led by Rika Takahashi (KEK)   

T. Nakada,    4


Tatsuya Nakada10

ICFA: International Committee for Future Accelerators 
LCB: Linear Collider Board 

LCC: Linear Collider Collaboration 
IDT: International Development Team



Expected Timeline

2022 ---------- Assumed start of Pre-lab ----------

2026 ---------- Assumed start of ILC-lab ----------

2027 ILC-lab approval of the first set of experiments and request to proceed toward TDRs

2025 TP submission and presentation of the first set of experiments

2023 LoI submission and presentation

2022 EoI presentation

Selection process by the ILCC

Necessary R&D for EoI

2021 IDT calls for EoI

2024 ILCC recommendation on the first set of the projects to proceed toward TP

Continuation of R&D

Necessary R&D for TP

Selection process by the ILCC

Continuation of R&D

2026-27 ILCC recommendation for the first set of experiments to proceed toward TDRs

• Funding agencies will not provide dedicated ILC detector R&D 
funds before the Pre-lab being established. 

• For some EoIs, R&D would be needed to make LoIs. 

→ driving the timing for the LoI submission
• Selection process starts with the LoIs. 

→ driving the timing for the LoI decision
• Experiments are formally approved based on TPs. 

• The ILC-lab is needed for approvals. 

• Availability of resources is part of the approval criteria. 
→ driving the timing for the TP decision

• These considerations are for the initial set of experiments. There 
could be more experiments proposed at later time.  

Necessary R&D for LoI

IDT-EB 21/12/2020

Timeline for the ILC experiments

triggered by sign for substantial funding for pre-lab in Japan

11

IDT: International Development Team 
EoI: Expression of Interest 

LoI: Letter of Interest 
TP: Technical Proposal 

TDR: Technical Design Report 
ILCC: ILC Committee



Interface with 
machine

Detector and 
technology R&D

Software and 
computing

Physics potential 
and opportunity

Coordinate the 
interactions between the 
accelerator and facility 
infrastructure planning 
and the needs of the 
experiments

Provide a forum for discussion 
and coordination of the 
detector and technology R&D 
for the future experimental 
programme

Promote and provide 
coordination of the 
software development 
and computing 
planning

Encourage and develop ideas 
for exploiting the physics 
potential of the ILC collider 
and by use of the beams 
available for more 
specialised experiments  

WG3 Organisation and mandates

Steering Group
Subgroup conveners, Coordinator and Deputy Coordinator(s)

Coordinator and Deputy coordinator(s)

Speaker’s bureau

IDT-EB 26/11/2020 

Chair:	Hitoshi	Murayama	(Berkeley/Tokyo)

Deputies:	Jenny	List	(DESY)	and	Claude	Vallée	(Marseille)

Andy	White	(UT	Arlington),	Ties	Behnke	(DESY),	Yuanning	Gao	(Peking),	Frank	Simon	(MPP),	Jim	Brau	(Oregon),	Keisuke	Fujii	(KEK),	Phil	Burrows	(Oxford),	Francesco	Forti	(INFN),

Filip	Zarnecki	(Warsaw),	Patty	McBride	(Fermilab),	Mihoko	Nojiri	(KEK),	CERN	member,	Timothy	Nelson	(SLAC),		Kajari	Mazumdar	(Mumbai),	Phillip	Urquijo	(Melbourne),	Dmitri	Denisov	(Brookhaven)

Karsten	Buesser	(DESY),	Yasuhiro	Sugimoto	(KEK),	

Roman	Poeschl	(Orsay),	US

Marcel	Vos	(Valencia),	Katja	Krueger	(DESY)

Petra	Merkel	(Fermilab),	David	Miller	(Chicago)

Frank	Gaede	(DESY),	Jan	Strube	(PNNL)

Daniel	Jeans	(KEK)

Michael	Peskin	(SLAC),	Junping	Tian	(Tokyo)

Aidan	Robson	(Glasgow)

Kiyotomo	Kawagoe	(Kyushu),	Alain	Bellerive	(Carleton),

Ivanka	Božović	Jelisavčić	(Belgrade)	

https://linearcollider.org/team/wg3
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Open to anybody interested!

https://linearcollider.org/team/wg3








ILC Workshop on 
Potential Experiments


(ILCX)
October 26–29, 2021, Tsukuba, Japan
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https://agenda.linearcollider.org/event/9211/overview



Due to the COVID-19 pandemic situation, 3 different forms should be 
considered in parallel
• Plan-A: Hybrid style

- Invite IDT members from overseas (20-30 persons?) and host domestic 
researchers

- Venue: KEK Tsukuba campus or Epochal Tsukuba International Congress 
Center (depending on the infection measures and session timetable)

- Preferable because it will be the first chance to get together at KEK (the 
IDT host institute) for the IDT members

• Plan-B: Fully online style
- If a case arises where pandemic situations are unavoidable…

• Plan-C: In-person style
- Strongly depends on the vaccination status…
- Venue: Epochal Tsukuba
- Boundary condition: 10% cancellation fee at Epochal until early July

Style of the workshop
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Timeline & Milestone

Timeline Milestone

mid-May Website open

mid-May 1st announcement

early June  Program coordination & session convener nomination 

late June Decision of Plan-A/B or Plan-C 

late June 1st circular & registration open

mid-Sep. Decision of Plan-A or Plan-B

26 October Day 1 of WS



IDT WG3


