

Ongoing MonteCarlo analysis of the qqh signal with the SDHCAL reconstruction. – Overlay impact –

Héctor García Cabrera

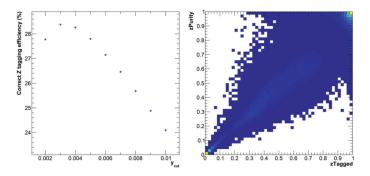
CIEMAT

12-05-2021

- The latest MC production sv02-02-01, set 250 GeV, reconstructed with the SDHCAL rv02-02-01.mlLD_15_02_v02 has now included the overlay events.
- Number of available events 50k in the DST-Merged files analyzed.
- Polarization eLpR (analysis of other polarizations is planned in the future).
- Beam crossing angle correction applied.

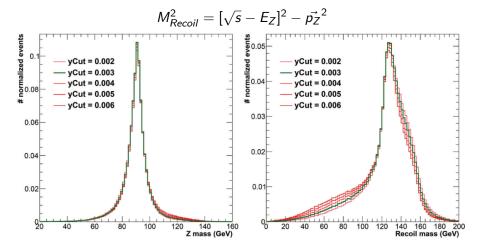
The objective of this preliminary analysis is to understand the effect of the newly included overlay into the signal events.

- We run over all possible jet combinatorial possibilities.
- Then we choose the pair that give us the closest mass to the Z known mass.
- Two quality variables are defined:


$$Z_{Tag} = rac{E_Z^{j_1,j_2}}{E_Z^{Total}} \ \ Z_{Purity} = rac{E_Z^{j_1,j_2}}{E_Z^{j_1,j_2}}$$

where $E_Z^{j_1,j_2}$: MC-truth di-jet energy from the Z, E_Z^{Total} : MC-truth Z energy and E^{j_1,j_2} : MC-truth total di-jet energy.

The E^{j₁,j₂} is computed through a loop over all the PFOs. The associated MC particle energy is weighted using the RecoMCTrughLink excluding the particle with a Higgs as a parent (pdgId = 25).

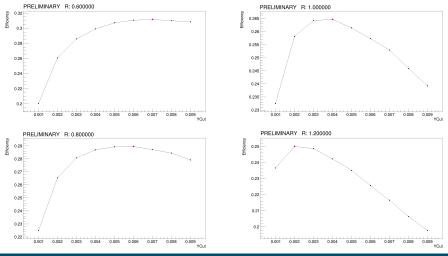

The algorithm used in this study was $ee_kt_algorithm$ within fast-jet with ExclusiveYCut strategy. An optimization of y_{cut} has to be done in order to maximize the di-jet reconstruction selection efficiency. A di-jet is considered efficient if $Z_{Tag} > 0.9$ and $Z_{Purity} > 0.9$.

The optimal value in this previous study was $y_{cut} = 0.003$.

M_Z and M_{Recoil} (previous results)

CALICO

We want to find the set of parameters from the jet clustering algorithms from which the impact of the overlay is minimal. The two algorithms studied are:

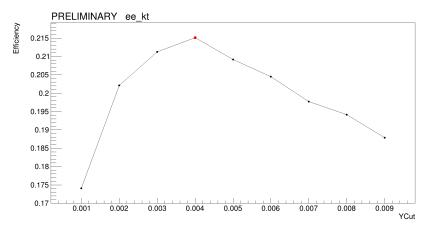

■ Generalized k_t algorithm for e⁺e⁻ collisions (ee_genkt) in the YCut exclusive mode.

$$d_{ij} = min(E_i^{2p}, E_j^{2p}) \frac{1 - cos(\theta_{ij})}{(1 - cos(R))}$$
; $d_{iB} = E_i^{2p}$

• k_t algorithm for e^+e^- collisions (ee_kt) in the YCut exclusive mode. $d_{ij} = 2min(E_i^2, E_j^2)(1 - cos(\theta_{ij}))$

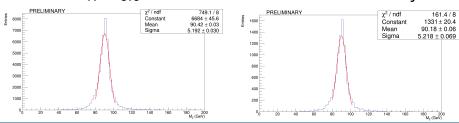
Parameters: ee_genkt -> $\mathbf{YCut},\,\mathbf{R}$ and \mathbf{P} ; ee_kt -> \mathbf{YCut}

YCut scans like the ones in Slide 4 are performed for different values of **R** and **P** for the ee_genkt algorithm and another one for the ee_kt algorithm.



Héctor García Cabrera

CALICO

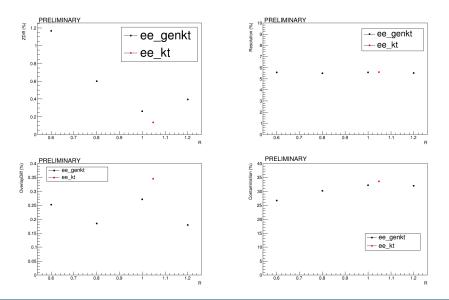

YCut scans like the ones in Slide 4 are performed for different values of **R** and **P** for the ee_genkt algorithm and another one for the ee_kt algorithm.

From the studied parameters R=0.6 gives the highest efficiency. However this does not mean that gives the best jet reconstruction. The quality variables computed are:

• Z_{Mass} differences (%). The Z mass is reconstructed, following the previous procedure, with and without overlay. This distribution is fitted to a gaus function and then two differences are computed: $ZDiff = |M_Z - M_Z^{NoOverlay}|/M_Z$ $OverlayDiff = |M_Z^{Overlay} - M_Z^{NoOverlay}|/M_Z^{NoOverlay}$

R = 0.6

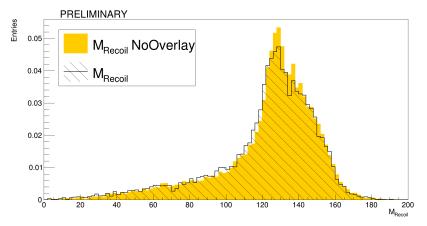
R = 0.6 No Overlay



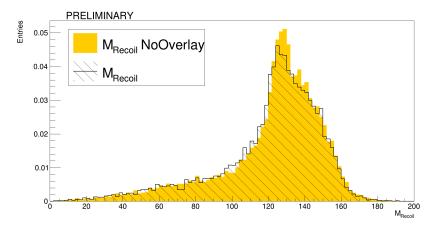
From the studied parameters R=0.6 gives the highest efficiency. However this does not mean that gives the best jet reconstruction. The quality variables computed are:

- Z_{Mass} differences (%). The Z mass is reconstructed, following the previous procedure, with and without overlay. This distribution is fitted to a gaus function and then two differences are computed: $ZDiff = |M_Z - M_Z^{NoOverlay}|/M_Z$ $OverlayDiff = |M_Z^{Overlay} - M_Z^{NoOverlay}|/M_Z^{NoOverlay}$
- Z_{Mass} "resolution". (σ/M_Z) from the previous fit.
- Jet Contamination (%). The mean percentage of jets that have some overlay contribution.

Quality variables



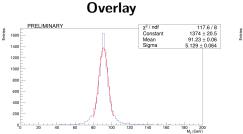
Héctor García Cabrera

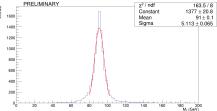


With this algorithm the optimal parameters have been found to be R = 1.0 and YCut = 0.004 and an impact of less than 0.3 % from overlay in the Z reconstruction.

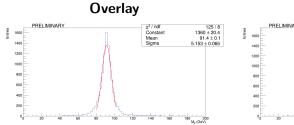
With this algorithm the optimal parameter is YCut = 0.004 and an impact of 0.35 % from overlay in the Z reconstruction.

It have been shown the set of parameters that minimizes the overlay effect while efficiently reconstructing the Z mass and showing healthy recoil mass distributions.

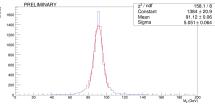

A slightly better shape in the recoil mass is obtained from the ee_kt method that indicates that it is the algorithm that should be used.


BACKUP

Héctor García Cabrera



No Overlay



No Overlay

