

Fixed the small bug
better than before, but still something is strange...

hh3->Divide(hh2, hh, 1.0,1.0, "B");
Replace contents of this histogram by the division of h1 by h2.
w/ Binomial errors

problem

python tauAna.py

from pyLCIO.io import LcioReader, StdHepReader

Loading LCIO ROOT dictionaries ...
Error in TClass::LoadClassInfo: no interpreter information for class EVENT is available even though it has a TClass initialization routine Error in TClass::LoadClassInfo: no interpreter information for class EVENT is available even though it has a TClass initialization routine. Error in TClass::LoadClassInfo: no interpreter information for class EVENT is available even though it has a TClass initialization routine Error in TClass::LoadClassInfo: no interpreter information for class EVENT is available even though it has a TClass initialization routine. Error in <TClass: LoadClassInfo>: no interpreter information for class IMPL is available even though it has a TClass initialization routine. Error in TClass::LoadClassInfo: no interpreter information for class IMPL is available even though it has a TClass initialization routine. Error in <TClass: LoadClassInfo>: no interpreter information for class IMPL is available even though it has a TClass initialization routine. Error in TClass::LoadClassInfo: no interpreter information for class IMPL is available even though it has a TClass initialization routine. Error in TClass::LoadClassInfo: no interpreter information for class IO is available even though it has a TClass initialization routine. Error in TClass::LoadClassInfo: no interpreter information for class IO is available even though it has a TClass initialization routine. Error in TClass::LoadClassInfo: no interpreter information for class IO is available even though it has a TClass initialization routine. Error in TClass::LoadClassInfo: no interpreter information for class IO is available even though it has a TClass initialization routine. Error in TClass::LoadClassInfo: no interpreter information for class IOIMPL is available even though it has a TClass initialization routine. Error in <TClass: LoadClassInfo>: no interpreter information for class IOIMPL is available even though it has a TClass initialization routine. Error in TClass::LoadClassInfo: no interpreter information for class IOIMPL is available even though it has a TClass initialization routine. Error in <TClass: LoadClassInfo>: no interpreter information for class IOIMPL is available even though it has a TClass initialization routine. Error in TClass::LoadClassInfo: no interpreter information for class UTIL is available even though it has a TClass initialization routine. Error in <TClass: LoadClassInfo>: no interpreter information for class UTIL is available even though it has a TClass initialization routine. Error in TClass::LoadClassInfo: no interpreter information for class UTIL is available even though it has a TClass initialization routine. Error in <TClass: LoadClassInfo>: no interpreter information for class UTIL is available even though it has a TClass initialization routine.

Plan

Midpoint method:
Have seen that the method works well in simple cases
Next, try with all MC and see the distribution
acceptance $($ Cone method $)+$ acceptance $($ Midpoint method $)=1 ?$
Midpoint method is applied when Cone method is failed

and understand the shape
by radiator function D

$$
D(1-x, s)^{2}
$$

$$
=H(x, s)=\Delta_{2} \beta x^{\beta-1}-\Delta_{1} \beta\left(1-\frac{x}{2}\right)
$$

$$
+\frac{\beta^{2}}{8}[-4(2-x) \log x
$$

Hayasaka-san asked us and Suehara-san answered

$$
\left.-\frac{1+3(1-x)^{2}}{x} \log (1-x)-2 x\right]
$$

Cone method

Cone method

"cone method" to reconstruct tau

2 possible solutions 1 possible solution
$\beta_{1}+\beta_{2}<\beta_{c c}$

NO solutions
red line:solution $=$ candidate tau direction
take a midpoint of visible daughters
take a midpoint of cone surface and use this new vector as a solution

$$
\vec{P}_{\mathrm{vis}}^{\tau^{+}}
$$

$\vec{P}_{\text {vis }}^{\tau^{+}}$

solution $=\overrightarrow{P_{1}}+\left|\overrightarrow{P_{1}}\right| \tan \beta_{1}\left(\overrightarrow{P_{1}} \times \overrightarrow{P_{12}}\right) \times \overrightarrow{P_{1}}$

