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and Blümlein, De Freitas, Schönwald (Phys. Lett. B816 (2021))]

TTP KARLSRUHE

Analytic Initial State Radiation Calculation
ILC IDT-WG3: Physics and Detectors Open Meeting, 2021

Kay Schönwald | July 15, 2021

KIT – The Research University in the Helmholtz Association
www.kit.edu

http://www.kit.edu


Outline

1 Motivation

2 The Method of Massive Operator Matrix Elements

3 Results for the Total Cross-Section

4 Results for the Forward-Backward Asymmetry

5 Conclusions

Motivation The Method of Massive Operator Matrix Elements Results for the Total Cross-Section Results for the Forward-Backward Asymmetry Conclusions

Kay Schönwald – Analytic Initial State Radiation Calculation July 15, 2021 2/22



Motivation

Corrections due to initial state radiation (ISR) can be
large, especially due to large logarithmic corrections

L = ln(s/m2
e) ≈ 10.

These corrections are important e.g.
for the prediction of the Z -boson peak
for t t̄ production
associated Higgs production through e+ e− → Z∗ H0

at future e+ e− colliders.

We extend the known O(α2) ISR corrections up to
O(α6L5), including the first three subleading logarithmic
corrections at lower orders.

We extend the ISR corrections for the forward-backward
asymmetry at leading logarithmic order to O(α6L6).
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Previous Calculations

1988: First calculation to O(α2) for the LEP analysis, through expansion of the phase space
integrals.
[Berends, Burgers, van Neerven (Nucl. Phys. B297 (1988))]

2012: New calculation up to O(α2) using the method of massive operator matrix elements.
[Blümlein, De Freitas, van Neerven (Nucl Phys. B855 (2012))]

⇒ Calculations do not agree at O(α2L0)!

Errors in one of the calculations?

Breakdown of factorization?

We revisited the original calculation, doing the expansion in me at the latest stage
[Blümlein, De Freitas, Raab, KS (Nucl. Phys. B956 (2020))]

and found agreement with [Blümlein, De Freitas, van Neerven (Nucl Phys. B855 (2012))] .
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The Method of Massive Operator Matrix Elements

The initial state radiation factorizes from the born cross section:

dσij

ds′
=
σ(0)(s′)

s

∑
l,k

Γli

(
z,
µ2

m2
e

)
⊗ σ̃lk

(
z,

s′

µ2

)
⊗ Γkj

(
z,
µ2

m2
e

)
+ O

(
m2

e

s

)
=
σ(0)(s′)

s
Hij

(
z,

s
m2

e

)
[

f (z)⊗ g(z) =
1∫

0
dx1

1∫
0
dx2f (x1)g(x2)δ(z − x1x2), f (N) =

1∫
0
dz zN−1f (z)

]
with z = s′/s, µ the factorization scale, into:

massless (Drell-Yan) cross sections σ̃ij

(
z, s′

µ2

)
[Hamberg, van Neerven, Matsuura (Nucl. Phys. B 359 (1991))]

[Harlander, Kilgore (Phys. Rev. Lett. 88 (2002))]

[Duhr, Dulat, Mistelberger (Phys. Rev. Lett. 125 (2020))]

massive operator matrix elements Γij

(
z, µ

2

m2
e

)
, which carry all mass dependence

[Blümlein, De Freitas, van Neerven (Nucl Phys. B855 (2012))]
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The Method of Massive Operator Matrix Elements

Massless cross sections and massive operator matrix elements obey renormalization group equations:

massless cross sections σ̃ij[(
∂

∂λ
− β(a)

∂

∂a

)
δklδjm +

1
2
γkl (N)δjm +

1
2
γjm(N)δkl

]
σ̃lj (N) = 0

massive operator matrix elements Γij[(
∂

∂Λ
+ β(a)

∂

∂a

)
δjl +

1
2
γkl (N)

]
Γli (N) = 0

with λ = ln(s′/µ2), Λ = ln(µ2/m2
e), the QED β-function β(a) and a = α/4

Here the usual anomalous dimensions, i.e. Mellin transforms of the splitting functions, contribute:

γij (N) = −
1∫

0

dz zN−1Pij (z)
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The Method of Massive Operator Matrix Elements

dσe+e−

ds′
=
σ(0)(s′)

s
He+e−(z, L) =

σ(0)(s′)
s

∞∑
i=0

i∑
k=0

ai Lk ci,k

The radiators:

c1,1 = −γ(0)
ee ,

c1,0 = σ̃
(0)
ee + 2Γ

(0)
ee ,

c2,2 =
1
2
γ

(0)
ee

2 +
β0

2
γ

(0)
ee +

1
4
γ

(0)
eγ γ

(0)
γe ,

. . .

c3,1 = −γ(2)
ee − 2Γ

(0)
ee γ

(1)
ee − Γ

(0)
ee γ

(0)
eγ Γ

(0)
γe − γ(1)

eγ Γ
(0)
γe − γ(0)

eγ Γ
(1)
γe − β1σ̃

(0)
ee − γ(1)

ee σ̃
(0)
ee

− γ(0)
eγ Γ

(0)
γe σ̃

(0)
ee − 2Γ

(0)
ee γ

(0)
γe σ̃

(0)
eγ − γ(1)

γe σ̃
(0)
eγ − Γ

(0)
γeγ

(0)
γγ σ̃

(0)
eγ − γ(0)

γe σ̃
(1)
γe + β0

[
−2Γ

(0)
ee σ̃

(0)
ee

− 2σ̃(1)
ee − 2Γ

(0)
γe σ̃

(0)
eγ

]
− γ(0)

ee

[
Γ

(0)
ee

2 + 2Γ
(1)
ee + 2Γ

(0)
ee σ̃

(0)
ee + σ̃

(1)
ee + Γ

(0)
γe σ̃

(0)
eγ

]
,

. . .
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For the first three logarithmic orders we need the following ingredients:

splitting functions γij up to three-loop order
[E.G. Floratos, D.A. Ross, C.T. Sachrajda (Nucl. Phys. B129 (1977))]

[A. Gonzalez-Arroyo, C. Lopez, F.J. Yndurain (Nucl. Phys. B153 (1979))]

. . .
[S. Moch, J. Vermaseren, A. Vogt (Nucl.Phys.B 688/691 (2004))]

massless (Drell-Yan) cross sections σ̃ij up to two-loop order
[Hamberg, van Neerven, Matsuura (Nucl. Phys. B 359 (1991))]

[Harlander, Kilgore (Phys. Rev. Lett. 88 (2002))]

massive operator matrix elements Γij up to two-loop order1

[Blümlein, De Freitas, van Neerven (Nucl. Phys. B855 (2012))]

⇒ Γγe was only considered up to one-loop order

1In the case of massless external states massive operator matrix elements have been considered in the context of DIS.
[Buza, Matiounine, Smith, Migneron, van Neerven (Nucl. Phys. B472 (1996)),
Bierenbaum, Blümlein, Klein (Nucl. Phys. B820 (2009)), . . . ]
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The Missing Operator Matrix Element Γγe

Γe+e+ = Γe−e− = 〈e|ONS,S
F |e〉 ,

Γe+γ = Γe−γ = 〈γ|OS
F |γ〉 ,

Γγe+ = Γγe− = 〈e|OS
V |e〉 ,

ONS,S
F ;µ1,...,µN

= iN−1S
[
ψ̄γµ1 Dµ2 . . .DµNψ

]
− traces,

OS
V ;µ1,...,µN = 2iN−2S

[
Fµ1αDµ2 . . .DµN−1 FαµN

]
− traces

The technique has been used to derive deep-inelastic scattering (DIS) structure functions in the
asymptotic limit Q2 � m2 up to O(α3

s).
In the context of DIS proven to work at α2

s in the
non-singlet process
[Buza, Matiounine, Smith, van Neerven (Nucl.Phys. B485 (1997) )

Blümlein, Falcioni, De Freitas (Nucl.Phys. B910 (2016) )]
pure-singlet process
[Blümlein, De Freitas, Raab, Schönwald (Nucl.Phys. B945 (2019) )]
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The Missing Operator Matrix Element Γγe

. . .

We have to compute on-shell 2-point functions with local operator insertions (∆2 = 0).
The operator can be resummed into a propagator like term:

∞∑
N=0

tN(∆.k)N =
1

1− t∆.k
.

The calculation can now follow standard techniques:
Integration-By-Parts reduction to master integrals.
Calculation of the master integrals via differential equations in the resummation variable t .
We find the Mellin-space expression by symbolically computing the N-th derivative.

For the calculations we make use of the packages Sigma [C. Schneider (Sem. Lothar. Combin.56 (2007))]

and HarmonicSums [J. Ablinger et al. (arXiv:1011.1176)] .
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The Missing Operator Matrix Element Γγe

Γ(1)
γe(N) =

P8

27(N − 4)(N − 3)(N − 2)(N − 1)N4(N + 1)4
+

(
2P7

9(N − 4)(N − 3)(N − 2)(N − 1)N3(N + 1)3
+

2
(

N2 + N + 2
)

(N − 1)N(N + 1)
S2

)
S1

+
P3

3(N − 2)(N − 1)N(N + 1)2
S1

2 +
2
(

N2 + N + 2
)

3(N − 1)N(N + 1)
S1

3 +
P6

3(N − 2)(N − 1)N2(N + 1)2
S2 +

4
(

N2 + N + 2
)

3(N − 1)N(N + 1)
S3

+
3 · 26+N

(N − 2)(N + 1)2
S1,1

(
1

2
, 1
)

+
26−N P5

3(N − 3)(N − 2)(N − 1)2N2

(
S2(2) + S1S1(2)− S1,1(1, 2)− S1,1(2, 1)

)
−

32
(

N2 + N + 2
)

(N − 1)N(N + 1)

[
S1(2)S1,1

(
1

2
, 1
)

+ S1,2

(
1

2
, 2
)
− S1,1,1

(
1

2
, 1, 2

)
− S1,1,1

(
1

2
, 2, 1

)
−
ζ2

2
S1(2)

]
−

48
(

N2 + N + 2
)

(N − 1)N(N + 1)
S2,1 +

4P4

(N − 2)(N − 1)N2(N + 1)2
ζ2

harmonic sums:

Sa,~b = Sa,~b(N) =
N∑

i=1

sgn(a)i

ia
S~b(i)

generalized harmonic sums:

Sa,~b(c, ~d) = Sa,~b(c, ~d ; N) =
N∑

i=1

(sgn(a) · c)i

ia
S~b(~d ; i)
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The Missing Operator Matrix Element Γγe

Analytic Mellin-inversion with HarmonicSums:

Γ(1)
γe(z) =

P9

135z3
−

320− 335z + 231z2

15z
H0 +

12 + 23z

6
H

2
0 +

2− z

3
H

3
0 + 32(2− z)

(
(2− z)2

3z2
− H0

)(
H̃−1H̃0 − H̃0,−1

)
− 8(2− z)H0,0,1 −

96− 190z + 118z2 − 41z3

3z2
H

2
1 − 32(2− z)

(
H̃−1H̃0 − H̃0,−1

)
H̃1

−
(

2
(

32− 48z + 36z2 − 13z3)
3z2

+ 4(2− z)H0

)
H0,1 −

(
2P10

45z4
−

2
(

32− 48z + 12z2 + 7z3)
3z2

H0

)
H1

+
2
(

2− 2z + z2)
z

(
H3

1

3
+ 8H1H0,1 + 16H̃0H̃0,−1 − 32H̃0,0,−1 − 16H0,1,1 + 8H̃0ζ2

)
+

(
4
(

32− 48z + 24z2 − 3z3)
3z2

− 8(2− z)
(
H0 + 2H̃1

))
ζ2 +

8
(

12− 10z + 5z2)
z

ζ3

harmonic polylogarithms of argument z and 1− z (H̃(z) = H(1− z)):

Ha,~b = Ha,~b(z) =

1∫
0

dτ fa(τ)H~b(τ), with f0(τ) =
1

τ
, f1(τ) =

1

1− τ
, f−1(τ) =

1

1 + τ
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The Radiators

dσe+e−

ds′
=
σ(0)(s′)

s
He+e−(z, L) =

σ(0)(s′)
s

∞∑
i=0

i∑
k=0

ai Lk ci,k

The radiators do not depend on the factorization scale, i.e. no collinear singularities for massive
electrons.
The analytic structures directly translate from the different ingredients.
Radiators are distributions in z-space:

ci,j (z) = cδi,jδ(1− z) + c+
i,j + creg

i,j

cδ3,3 =
572

9
− 704

3
ζ2 +

512
3
ζ3,

c+
3,3 =

(
5744
27
− 256ζ2

)
D0 +

1408
3
D1 + 256D2,

Dk =

(
lnk (1− z)

1− z

)
+

,

creg
3,3 =

{
16H0P104

9(z − 1)
− 4P131

27z
+

8
(
3− 19z2

)
H2

0

3(z − 1)

+

[
16P105

9z
−

128
(
1 + z2

)
H0

z − 1

]
H1 − 128(1 + z)H2

1

− 352
3

(1 + z)H0,1 +
736
3

(1 + z)ζ2

}
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dσe+e−

ds′
=
σ(0)(s′)

s
He+e−(z, L) =

σ(0)(s′)
s

∞∑
i=0

i∑
k=0

ai Lk ci,k

The radiators do not depend on the factorization scale, i.e. no collinear singularities for massive
electrons.
The analytic structures directly translate from the different ingredients.
Radiators are distributions in z-space:

ci,j (z) = cδi,jδ(1− z) + c+
i,j + creg

i,j

cδ3,3 =
572

9
− 704

3
ζ2 +

512
3
ζ3,

c+
3,3 =

(
5744
27
− 256ζ2

)
D0 +

1408
3
D1 + 256D2,

Dk =

(
lnk (1− z)

1− z

)
+

,

creg
3,3 =

{
16H0P104

9(z − 1)
− 4P131

27z
+

8
(
3− 19z2

)
H2

0

3(z − 1)

+

[
16P105

9z
−

128
(
1 + z2

)
H0

z − 1

]
H1 − 128(1 + z)H2

1

− 352
3

(1 + z)H0,1 +
736
3

(1 + z)ζ2

}
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Numerical Results
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Application to the Forward-Backward Asymmetry AFB

The forward-backward asymmetry is defined by:

AFB(s) =
σF (s)− σB(s)

σF (s) + σB(s)
,

with

σF (s) = 2π

1∫
0

d cos(θ)
dσ

dΩ
, σB(s) = 2π

0∫
−1

d cos(θ)
dσ

dΩ
,

and θ the angle between the incoming e− and outgoing µ−.
The technique of radiators can also be used for AFB : [Böhm et al. (LEP Physics Workshop 1989, p.203–234)]

AFB(s) =
1

σF (s) + σB(s)

1∫
z0

dz
4z

(1 + z)2 HFB(z)σ
(0)
FB (zs)

Due to the angle dependence the radiators are not the same as in the total cross-section.
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Application to the Forward-Backward Asymmetry AFB

At leading logarithmic (LL) accuracy the radiators are given by:

HLL
FB =

1∫
0

dx1

1∫
0

dx2
(1 + z)2

(x1 + x2)2 ΓLL
ee(x1)ΓLL

ee(x2)δ(z − x1x2).

Due to the additional angle dependence the integral does not factorize with the Mellin-transform.

At subleading logarithmic accuracy the integral will likely become more involved due to additional
angle dependence of the cross-sections.

The integrals can be solved analytically in Mellin and momentum fraction space.
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Application to the Forward-Backward Asymmetry AFB

A direct integration in terms of iterated integrals at argument z is complicated by singularities at
z → 0 and z → 1.

A direct computation of the Mellin transform

M[H̃LL
FB(z)](N) =

1∫
0

dx1

1∫
0

dx2 xN
1 xN

2

(
(1 + x1x2)2

(x1 + x2)2
− 1
)

ΓLL
ee(x1)ΓLL

ee(x2)

is complicated by the symbolic powers of N.

We chose to calculate the generating function:

G[H̃LL
FB(z)](t) =

∞∑
N=0

tNM[HLL
FB(z)](N) =

1∫
0

dx1

1∫
0

dx2
1

1− t x1x2

(
(1 + x1x2)2

(x1 + x2)2
− 1
)

ΓLL
ee(x1)ΓLL

ee(x2)

The integrations as well as the extraction of the Mellin space result and the inverse Mellin transform
to momentum fraction space can be performed with HarmonicSums together with Sigma.
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Application to AFB – Results

In Mellin space we additionally encounter cyclotomic harmonic sums.

In momentum fraction space we encounter cyclotomic harmonic polylogarithms, i.e. we have to
introduce the additional letters:

f{4,0}(τ) =
1

1 + τ 2 , f{4,1}(τ) =
τ

1 + τ 2 .

For example:
(

S~w ≡ S~w (N)
)

H(2),LL
FB (N) =

8
(
3N2 + 3N − 1

)
P1

(N − 1)N2(N + 1)2(N + 2)(2N − 1)(2N + 3)
−

32
(
4N2 + 4N − 1

)
(−1)N

(2N − 1)(2N + 1)(2N + 3)
[S−1 + ln(2)],

H(3),LL
FB (N) = −(−1)N 256(4N2 + 4N − 1)

(2N − 1)(2N + 1)(2N + 3)

[
S−1,1 −

1
2

ln2(2) +
N∑

i=1

ln(2) + S−1(i)
1 + 2i

]
+ . . . .
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In momentum fraction space we encounter cyclotomic harmonic polylogarithms, i.e. we have to
introduce the additional letters:

f{4,0}(τ) =
1

1 + τ 2 , f{4,1}(τ) =
τ

1 + τ 2 .

For example:
(

H~w ≡ H~w (
√

z)
)

H(2),LL
FB (z) =

2(1− z)(1 + z)2

z
+ 2π

(1− z)2

√
z
− 8(1 + z)H0 − 8(1− z)2 H{4,0}√

z
,

H(3),LL
FB (z) =

64(1− z)2

√
z

[
H1,{4,0} − H−1,{4,0} − H{4,0},{4,1} +

1
2

H0,{4,0}

]
+ . . .
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Application to AFB – Numerical Results

86 88 90 92 94 96
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AFB and its initial state QED corrections as a function of
√

s. Black (dashed) the
Born approximation, blue (dotted) the O(α) improved approximation, red (full)
also including the leading-log improvement up to O(α6) for s′/s ≥ 4m2

τ/s.
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Application to AFB – Numerical Results
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∆AFB = 1− A(l)
FB

A(0)
FB

,

where (l) denotes the order of
ISR-corrections considered

∆AFB in % as a function of
√

s. Black (dashed) the O(α) improved approximation, blue (dotted) the O(α2L2)

improved approximation, red (full) also including the leading-log improvement up to O(α6) for s′/s ≥ 4m2
τ/s.
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Conclusions and Outlook

Conclusions:

We calculated the ISR corrections to the process e+e− → γ∗/Z∗ up to O(α6L5) including the first
three logarithmic terms at lower orders.

We calculated the leading logarithmic ISR corrections to the forward-backward asymmetry up to
O(α6L6).

The corrections can become important at future e+e− machines running at high luminosities at or
close to the Z -pole.

The radiators can be used for other processes like e+e− → t t̄ and e+e− → Z H.

Outlook:

The massless Drell-Yan cross sections are known up to O(α3)
⇒ An extension to the first four logarithmic orders is possible, but needs the calculation the
operator matrix elements up to O(α3) and the 4-loop splitting functions.

The technique can be extended to subleading logarithmic corrections of AFB .

The method can be extended to QCD to study e.g. the heavy-quark initiated Drell-Yan process.
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Backup
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The Method of Massive Operator Matrix Elements

Usually it is more convenient to work in Mellin space:

M[f (z)](N) =

1∫
0

dzzN−1f (z)

Here the convolution ⊗

f (z)⊗ g(z) =

1∫
0

dz1

1∫
0

dz2f (z1)g(z2)δ(z − z1z2)

factorizes:

M[f (z)⊗ g(z)](N) = M[f (z)](N) ·M[g(z)](N)
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Numerical Results

L6 L5 L4 L3 L2 L L0

O(α)
√ √

O(α2)
√ √ √

O(α3)
√ √ √

-
O(α4)

√ √ √
- -

O(α5)
√ √ √

- - -
O(α6)

√ √
- - - - -

Fixed width s dep. width
Peak Width Peak Width

(MeV) (MeV) (MeV) (MeV)
O(α) correction 185.638 539.408 181.098 524.978
O(α2L2): – 96.894 –177.147 – 95.342 –176.235
O(α2L): 6.982 22.695 6.841 21.896
O(α2): 0.176 – 2.218 0.174 – 2.001
O(α3L3): 23.265 38.560 22.968 38.081
O(α3L2): – 1.507 – 1.888 – 1.491 – 1.881
O(α3L): – 0.152 0.105 – 0.151 – 0.084
O(α4L4): – 1.857 0.206 – 1.858 0.146
O(α4L3): 0.131 – 0.071 0.132 – 0.065
O(α4L2): 0.048 – 0.001 0.048 0.001
O(α5L5): 0.142 – 0.218 0.144 – 0.212
O(α5L4): – 0.000 0.020 – 0.001 0.020
O(α5L3): – 0.008 0.009 – 0.008 0.008
O(α6L6): – 0.007 0.027 – 0.007 0.027
O(α6L5): – 0.001 0.000 – 0.001 0.000

Table 1: Shifts in the Z-mass and the width due to the different contributions to the ISR QED
radiative corrections for a fixed width of ΓZ = 2.4952 GeV and s-dependent width using MZ =
91.1876 GeV and s0 = 4m2

τ .
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Application to AFB – Numerical Results

∆AFB is the change of the forward-backward asymmetry from one order to the other for z0 = 4m2
τ
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