Strange quark tagging with ILD to search for new physics in the Higgs sector

ILC WG3 Physics Meeting – September 16, 2021

Matthew Basso (Toronto) and Valentina Cairo (SLAC), on behalf of everyone on the Snowmass 2021 Lol

Overview

- Submitted a Letter of Interest as part of Snowmass 2021
 - <u>Basic goal</u>: develop a strange tagger using ILD@ILC and apply the tagger to a simple SM $H \rightarrow ss$ or BSM $H \rightarrow cs$ analysis
 - In line with ILC Snowmass 2021 study questions (2007.03650)
 - Interplay with the instrumentation: strange tagging capabilities strongly depend on the detector (e.g., PID)

Strange Quark as a probe for new physics in the Higgs Sector

M.J. Basso^(a), V.M.M. Cairo^(b), U. Heintz^(c), J. Luo^(c), M. Narain^(c), R. S. Orr^(a), A. Schwarzman^(b), D. Su^(b), E. Usai^(c), C. Vernieri^(b), C. Young^(b)

> (a) University of Toronto, Toronto ON - Canada (b) SLAC National Accelerator Laboratory, Stanford CA - USA (c) Brown University, Providence RI - USA

$H \rightarrow ss$ and $H \rightarrow cs$

- *H*→*ss*: likely to remain out of experimental reach unless enhanced relative to SM expectations
- H→cs: some BSM models allow for the 1st & 2nd generation fermion masses to be an additional source of EW symmetry breaking, resulting in a "SM" Higgs doublet (125 GeV) and a "heavy" Higgs doublet
 - See 1610.02398 for instance
 - Predicts an *enhancement* to Higgs cross section
 - Charged heavy Higgs can undergo flavour violating decays (e.g., cs) – s/c-tagging can help here

Charged heavy Higgs branching ratios. Taken from Fig. 6 of 1610.02398.

Different jet types, pictorially

Charged Kaon track

- Zero track impact parameter w.r.t. primary vertex
- Momentum fraction relative to the jet momentum carried by the leading Kaon
 - (Longitudinal vs transverse components?)

$V^{0}(K_{s}^{0},\Lambda^{0})$

- Vertex momentum & displacement must point in the same direction
- Mean vertex distance smaller compared to b/c

+ the usual b/c discriminants (vertex mass, impact parameter for all tracks, etc.)

Remember to normalize the discriminants to make them boost invariant (as much as possible)

2021/09/16

ILD@ILC

- The ILD detector
 - Detector overview: 1912.04601
 - 3 double-layer pixel detectors for vertexing
 - Time projection chamber (TPC) for tracking with inner/outer Si layers
 - Low material assists in low-p tracking
 - High granularity sampling calorimeters for particle flow reconstruction
 - Challenge is reconstructing neutral hadrons
 - Precise EM/hadronic design still under study
 - Tracking/calorimetry contained in 3.5 T field

ILD detector quadrant. Taken from Fig. 1 of 1912.04601.

Flavour tagging requirements

- Good impact parameter resolution, secondary vertexing
 - Pertinent to *b*/*c*-tagging
- For strange versus up/down ("light") quark tagging, there's a need for **kaon tagging**
 - TPC provides *dE/dx*, Si detectors on either side of TPC provide time-of-flight (TOF) measurement
 - TOF works best at low p (< 10 GeV), expect dE/dx to work better for kaon tagging (where p > 10 GeV)
- ILD already provides BDT scores for *b/c*-taggers and an other ("*o*") tagger per jet – these can be utilized

ILD separation power for pions and kaons using dE/dx and TOF (100 ps resolution). Taken from Fig. 3 of 1912.04601.

Strange jet tagger

Multiclassifier tagger and inputs

- Use a *multiclassifier* tagger, which assigns probabilities to the possible flavours of a jet simultaneously
- Train on ILD-reconstructed $H \rightarrow qq/gg$ samples (qq = uu, dd, ss, cc, bb) with $\sqrt{s} = 250$ GeV and $P_{L}[e] = -100\%$ and $P_{R}[e] = +100\%$
 - Unskimmed, except for $N_{\text{jets}} \ge 2$, $N_{\text{leptons}} = 0$, and truth $H \rightarrow qq/gg$ cuts
- Use per-jet level inputs as well as variables on the 10 leading particles in each jet (with kinematics re-defined relative to the jet axis and re-normalized relative to jet momentum)
 - <u>Jets</u>: momentum *p*, pseudorapidity η , polar angle ϕ , mass *m*, *b/c/o*-tagger scores, category, $N_{\text{particles}}$
 - <u>Particles</u>: p, η , ϕ , m, charge, **truth** electron/muon/pion/kaon/proton likelihoods (0 or 1, using PDG ID dE/dx and TOF likelihoods not yet fixed in samples)
 - "Kaons": K_{S^0} (310), $K^{+/-}$ (321), Λ (3122)

Tagger architecture

- We picked a relatively simple neural network (NN) architecture
 - 3 layer (128→64→32 nodes) recurrent neural network (using gated recurrent units) for particle-level inputs then concatenated with jet-level inputs and fed into a 3 layer (128→64→32 nodes) multilayer perceptron
 - Architecture shows up in many different HEP measurement scenarios (e.g., recent ATLAS H→ZZ→4ℓ couplings measurement, see Section 5.2 of 2004.03447); specifically, applied even to strange tagging performance at hadron colliders (used LSTMs instead of GRUs)
 - "Maximum performance of strange-jet tagging at hadron colliders" (2011.10736)

Tagger architecture: pictorially

10

Performance: *b*, *c*, and *g* jets

- MVA likely returning b/c-tagger scores should do just as well or better than input BDT scores
- Reasonable discrimination of gluon jets

Performance: s and uld jets

- Separation of s and u/d is possible with using truth likelihoods
- At 50% strange tagging efficiency, we have 90% background rejection over 70% for LCFIPlus Otag (see ROC curves in Backup and LCWS2021 talk)

H→ss analysis

Analysis overview

- Analysis performed on the same flavour tag samples as for training (500K events per flavour) as well as 2f_Z_hadronic and 4f_ZZ_hadronic samples (~1M events each)
 - Cross sections assume $\sqrt{s} = 250$ GeV and $P_{L}[e^{-}] = -80\%$, $P_{R}[e^{+}] = +30\%$
 - Accordingly, use the cross sections decorated onto the miniDSTs and multiply by BR[$H \rightarrow inv$] * BR[$H \rightarrow qq/gg$], BR[$Z \rightarrow had$], or BR[$Z \rightarrow had$]²
 - N.B.: BR[H→ss], BR[H→uu], and BR[H→dd] aren't available, so we take BR[H→cc] and scale using ratios of quark masses squared

− $BR[H \rightarrow ss] \sim 2E-4$, $BR[H \rightarrow uu] \sim 2E-6$, $BR[H \rightarrow dd] \sim 5E-7$

- Multiply cross sections by integrated luminosity of 2000 fb⁻¹ to yield events

Analysis cuts

- <u>Preliminary selection</u>:
 - Leading and subleading jet momenta, $p_j > 30 \text{ GeV}$
 - Dijet mass, $M_{jj} \in [120, 140]$ GeV
 - Dijet energy, *E_{jj}* ε [125, 160] GeV
 - Missing mass, $M_{\text{miss}} \in [75, 120] \text{ GeV}$
 - Angular separation, $\Delta R_{jj,miss} = \sqrt{(\Delta \phi_{jj,miss}^2 + \Delta \eta_{jj,miss}^2)} < 4$
 - Leading and subleading LCFIPlus tagger scores, score^{*b*}_{*j*} < 0.2 && score^{*c*}_{*j*} < 0.35
 - Number of PFOs per event, N_{PFOs} /event ϵ [30, 60]
 - Number of PFOs per jet, N_{PFOs} /jet ϵ [10, 40]

Cutflow

ILD Preliminary, $\mathcal{L} = 2000 \text{ fb}^{-1}$, $\sqrt{s} = 250 \text{ GeV}$, $P(e^-, e^+) = (-80\%, +30\%)$

	$ (H \to s\bar{s})(Z \to \nu\nu)$	$(H\to gg)(Z\to \nu\nu)$	$(H \to u \bar{u}/d \bar{d})(Z \to \nu \nu)$	$(H \to c\bar{c})(Z \to \nu\nu)$	$(H\to b\bar{b})(Z\to\nu\nu)$	$Z \to q \bar{q}$	$ZZ \rightarrow q\bar{q}q\bar{q}$	Sig. eff.	Bkg. eff.
No cut	42.65 ± 0.06	17254.17 ± 24.41	0.59 ± 0.0	5858.77 ± 8.29	116168.67 ± 164.29	$176876516.6 \pm 161411.64$	1342206.08 ± 1338.33	1.00e+00	$1.00e{+}00$
No leptons	42.55 ± 0.06	17225.89 ± 24.39	0.59 ± 0.0	5846.08 ± 8.28	115535.31 ± 163.84	$175328405.19 \pm 160703.71$	1335436.33 ± 1334.95	9.98e-01	9.91e-01
≥ 2 jets	42.55 ± 0.06	17225.89 ± 24.39	0.59 ± 0.0	5846.08 ± 8.28	115535.31 ± 163.84	$175328405.19 \pm 160703.71$	1335436.33 ± 1334.95	9.98e-01	9.91e-01
$p_{j0}, p_{j1} > 30 \text{ GeV}$	39.46 ± 0.06	16424.08 ± 23.81	0.55 ± 0.0	5619.05 ± 8.12	109492.68 ± 159.5	$131310044.43 \pm 139074.89$	1331247.44 ± 1332.86	9.25e-01	7.44e-01
$M_{jj} \in [120, 140] \text{ GeV}$	29.75 ± 0.05	12459.56 ± 20.74	0.42 ± 0.0	3883.41 ± 6.75	63849.78 ± 121.8	7424895.55 ± 33070.82	8041.49 ± 103.59	6.97e-01	4.21e-02
$E_{jj} \in [125, 160] \text{ GeV}$	29.62 ± 0.05	12401.25 ± 20.69	0.42 ± 0.0	3862.38 ± 6.73	63407.65 ± 121.38	4027593.77 ± 24356.93	6111.86 ± 90.31	6.94e-01	2.31e-02
$M_{\text{miss}} \in [75, 120] \text{ GeV}$	27.56 ± 0.05	11614.11 ± 20.02	0.39 ± 0.0	3612.75 ± 6.51	59551.31 ± 117.63	867590.51 ± 11304.65	2105.79 ± 53.01	6.46e-01	5.30e-03
$\Delta R_{ii, \text{miss}} < 4$	23.82 ± 0.05	10039.07 ± 18.62	0.34 ± 0.0	3124.94 ± 6.05	51512.9 ± 109.4	151865.16 ± 4729.65	1537.31 ± 45.29	5.58e-01	1.22e-03
$\mathrm{score}^{b}/\mathrm{jet} < 0.2$	22.2 ± 0.04	8593.49 ± 17.22	0.32 ± 0.0	1917.39 ± 4.74	551.1 ± 11.32	88968.53 ± 3620.08	689.92 ± 30.34	5.20e-01	5.65e-04
$\mathrm{score}^c/\mathrm{jet} < 0.35$	20.72 ± 0.04	7745.04 ± 16.35	0.3 ± 0.0	302.77 ± 1.88	179.83 ± 6.46	73060.25 ± 3280.5	548.47 ± 27.05	4.86e-01	4.59e-04
$N_{\text{PFOs}}/\text{event} \in [30, 60]$	13.93 ± 0.03	854.7 ± 5.43	0.2 ± 0.0	146.28 ± 1.31	44.14 ± 3.2	33584.15 ± 2224.16	64.05 ± 9.25	3.27e-01	1.95e-04
$N_{\rm PFOs}/{\rm jet} \in [10, 40]$	12.53 ± 0.03	778.96 ± 5.19	0.18 ± 0.0	136.34 ± 1.26	39.96 ± 3.05	26955.7 ± 1992.62	56.05 ± 8.65	2.94e-01	1.57e-04

- We use Durham2Jets, so we always have 2 jets
- Largest **decrease** in signal efficiency at M_{ii} cut
 - Provides one of the strongest handles on reducing 2f_Z_hadronic, however
- <u>Net result</u>: 29% signal efficiency, 0.016% background efficiency
 - $H \rightarrow bb \ s/b \sim 0.0007 \ @$ No cut can be compared to that in the 4-jet channel, 0.00077 (Backup)

Histograms: p_{j_0} and p_{j_1}

Matthew Basso (Toronto)

Histograms: M_{jj} and E_{jj}

Matthew Basso (Toronto)

Histograms: M_{miss} and $\Delta R_{jj,\text{miss}}$

Matthew Basso (Toronto)

Histograms: b-tagger scores

Matthew Basso (Toronto)

Histograms: c-tagger scores

Matthew Basso (Toronto)

Histograms: N_{PFOs}/event

Should we soften this cut to keep more signal? 67% efficiency for signal, but 11% efficiency for $H \rightarrow gg$

Unstacked green line is signal

Histograms: N_{PFOs}/jet

Matthew Basso (Toronto)

Signal discriminant(s)

We can look at sum of leading and subleading jet strange scores (right) or product (left)

2021/09/16

Signal discriminant (2)

Using asymptotic significance assuming Asimov data (neglecting MC stats):

Sensitivity peaks only because s < 1 and b ~ O(1) (bins not populated by 2f_Z_hadronic)

Discussion

- Generally, cutting on the sum of the strange jet scores seems more stable
 - Discovery measurement seems *unlikely*, even after using truth info in the tagger
 - We will convert the results into limits on the Higgs to strange BR as the "money" plot (neglecting stat uncertainties on 2f_Z_hadronic? Would likely dominate the result, and these can probably be reduced with enlarged samples)
- Any gains in the analysis would come from reducing the 2f_Z_hadronic background
 - Tricky, as even now we only keep <10 raw events per 15,000 raw events when processing this background (similar for 4f_ZZ_hadronic)
 - As a suggestion from the ILD community, quantities like $\Delta \phi_{jj}$ or $p_{T^{j}}$ should help

Summary

- Presented progress towards strange tagging with ILD and a $H \rightarrow ss$ analysis
 - Sensitivity is *limited* we are looking at the best case scenario in terms of tagger (save other architectures), analysis could better optimized more, however
 - We are also happy to scale the results to other scenarios
 - More statistics for both 2f_Z_hadronic and 4f_ZZ_hadronic would be beneficial at the same time, having MC for a 2HDM H→cs decay could provide prospects for BSM scenarios with enhanced yields
 - Ongoing discussion on whether to enlarge samples statistics
 - Looking to write up what has been done as a contribution to Snowmass 2021

Questions?

Backup

Neutral heavy Higgs BRs

Neutral heavy Higgs branching ratios. Taken from Fig. 3 of 1610.02398.

Matthew Basso (Toronto)

2021/09/16

ROC curves: *b* and *c* jets

ROC curves: g jets

2021/09/16

ROC curves: s and uld jets

Table 2: Cross-sections and number of generated MC samples on the Higgs production processes and the major SM background processes for both $\sqrt{s} = 250$ and 500 GeV. The cross-sections given in the table are set to be each operation beam polarization states: $P(e^-, e^+) = (-80\%, +30\%)$ and $P(e^-, e^+) = (+80\%, -30\%)$, whereas the number of MC samples are given with fully beam polarization states: $P(e^-, e^+) = P_{e^-}^L P_{e^+}^R = (-100\%, +100\%)$. The eeH(s) and eeH(t) denote the s-channel ZH process and the t-channel ZZ-fusion processes. $2f \rfloor$ and $2f \rfloor h$ in the table indicate that the final state has a lepton pair such as charged leptons or neutrinos, and a quark pair like $u\bar{u}, d\bar{d}$ except $t\bar{t}$. $4f \rfloor$ and $4f \rfloor h$ are the same indication with $2f \rfloor$ or $2f \rfloor h$, that means a final state has two lepton pairs or two quark pairs. $4f \rfloor s$ shows that a final state has a lepton pair and a quark pair. At $\sqrt{s} = 500$ GeV 6f is included in the SM backgrounds, where possible diagrams of 6 fermions in a final state are considered such as $t\bar{t}$ and a fermion pair with two W bosons and two fermion pairs with the Z boson.

e⁺e⁻ cross sections

Table 2, taken from page 62 of Tomohisa Ogawa's thesis

$\sqrt{s}=250~{ m G}$	eV operation pol	fully polarization				
	Cross-section (MC sample				
$\mathbf{P}(e^-,e^+)$	(-80%, +30%)	(+80%, -30%)	$P^L_{e^-}P^R_{e^+}$	$P^R_{e^-}P^L_{e^+}$	$P^L_{e^-}P^L_{e^+}$	$P^R_{e^-}P^R_{e^+}$
eeH(s)	10.7	7.14	$4.00\cdot 10^4$	$1.00\cdot 10^4$	0	0
eeH(t)	0.71	0.52	$1.00\cdot 10^4$	$1.00\cdot 10^4$	3992	3992
$\mu\mu H$	10.4	7.03	$4.00\cdot 10^4$	$1.00\cdot 10^4$	0	0
qqH	210.2	141.9	$5.45\cdot 10^5$	$2.94\cdot 10^5$	0	0
$\nu\nu H$ (s)	61.6	41.6	$12.8\cdot 10^4$	$6.50\cdot 10^4$	0	0
$\nu\nu H$ (t)	15.4	0.93	$12.8\cdot 10^4$	$6.50\cdot 10^4$	0	0
$2f_l$	$3.82\cdot 10^4$	$3.49\cdot 10^4$	$2.63\cdot 10^6$	$2.13\cdot 10^6$	$5.03\cdot 10^5$	$5.03\cdot 10^5$
$2f_{-}h$	$7.80\cdot 10^4$	$4.62\cdot 10^4$	$1.75\cdot 10^6$	$1.43\cdot 10^6$	0	0
$4f_l$	$6.03\cdot 10^3$	$1.47\cdot 10^3$	$2.25\cdot 10^6$	$9.80\cdot 10^4$	$2.73\cdot 10^5$	$2.73\cdot 10^5$
$4f$ _ sl	$1.84\cdot 10^4$	$2.06\cdot 10^3$	$4.04\cdot 10^6$	$3.56\cdot 10^5$	$9.78\cdot 10^4$	$9.78\cdot 10^4$
$4f_h$	$1.68\cdot 10^4$	$1.57\cdot 10^3$	$2.38\cdot 10^6$	$2.42\cdot 10^5$	0	0

H→bb analysis: histograms

Figure 66, taken from page 87 of Tomohisa Ogawa's thesis

Figure 66: The distributions show each observable used for the background suppression assuming 250 fb⁻¹ with $P(e^-, e^+) = (-80\%, +30\%)$. The explanation of the observables are given in the text. Red arrows on each plot indicate the cut values applied to each observable as the background suppression.

H→*bb* analysis: cutflow

Table 4, taken from page 89 of Tomohisa Ogawa's thesis

Table 4: The expected number of remaining signal and background events after each cut for the $Zh \rightarrow q\bar{q}b\bar{b}$ at $\sqrt{s}=250$ GeV, with with both of the beam polarization states: $P(e^-, e^+)=$ (-80\%,+30\%) and (+80\%,-30\%). The integrated luminosity of 250 fb⁻¹ is assumed. The signal efficiency ϵ and significance S_{sig} are also given in the table.

Cut variables	q ar q b ar b	ϵ	$q\bar{q}H(H\notin b\bar{b})$	2f	4f	S_{sig}
No cut	30372	100	22175	$2.9\cdot 10^7$	$1.02\cdot 10^7$	-
$N_{isolep} = 0$	30314	99.8	17492	$2.6\cdot 10^7$	$6.9\cdot 10^6$	5.28
$N_{pfo} \in [55, 170]$	30218	99.5	15141	$6.0\cdot 10^6$	$4.4\cdot 10^6$	9.37
$E_Z \in [87.75, 118.50] \text{ GeV}$	25712	84.7	11365	$3.3\cdot 10^6$	$2.8\cdot 10^6$	10.35
$M_Z \in [82.29, \ 102.29] \text{ GeV}$	18658	61.4	7572	$3.8\cdot 10^5$	$1.0\cdot 10^6$	15.62
$b\text{-}tag \in [1.25, \ 2.0]$	11203	36.9	381	9364	8454	65.76
$E_H \in [98.67, 150.67] \text{ GeV}$	10909	35.9	368	8242	7998	66.21
$\operatorname{Min} N_{pfo} \in [5, \ 40]$	10841	35.7	358	6932	7792	67.81
$-\log y_{32} \in [0.5, 3.62]$	10409	34.3	349	3917	7453	70.53
$-\log y_{43} \in [1.8, 5.52]$	10065	33.2	346	2921	7027	71.15
thrust $T \in [0.5, 0.89]$	9966	32.8	345	2520	7004	71.39
$M_H \in [90, 142] \text{ GeV}$	9907	32.6	335	2419	6382	72.43

 $\sqrt{s}=250 \text{ GeV}$ $P(e^-, e^+)=(-80\%, +30\%)$

2021/09/16