SiD Hadron Calorimeter Factors affecting resolution/performance

Explore factors for HCal:

- SiPM/Tile misalignment
- Tile response uniformity
- Tile wrapping response uniformity
- MIP calibration
- SiPM factors in simulation (Saturation, smearing, temperature,...)
- MIP threshold variation
- Dead channels
- Tile size(s)
- Sampling fraction
- ...?

A. Prior, A. White – U. Texas at Arlington

Effects of misalignment on response uniformity of SiPM-on-tile technology

Dipole asymmetry 0.1 per 1mm displacement ~80% of Tile has response within 5% of mean -> Limit asymmetry to 0.05 or 500 μm

Tile Response Uniformity

97.1% (80.8%)of the tile area is within 10% (5%) deviation from the average response of 20.6 p.e. to electrons (⁹⁰Sr)

2015

Uniformity and Reflectors

HCal Calibration

REVIEWS OF MODERN PHYSICS, VOLUME 88

Temperature variations and corrections

F. Sefkow, A. White et al. REVIEWS OF MODERN PHYSICS, VOLUME 88

SiPM simulation – as implemented

1) Basic energy to number of p.e. conversion:

npe = Energy (GeV) x pe_per_MIP/mip_calib

2) Saturation from limited number of pixels:

npe = Npixel x $(1 - e^{-(npe/Npixel)})$

3) Binomial smearing:

npe = RandomBinomial(Npixel, p) p = fraction of hit pixels on SiPM

4) Variation of pixel capacitance:

Gaussian distribution.

MIP Threshold dependence

6/9/2021

MIP Threshold dependence

Dead and Uncalibrated channels

CALICE HCal Technological Prototype

Number of channels = 21,888

Number without possible MIP calibration = 19 (~0.1%)

Number of dead channels = 6 (out of 19) ~0.03% (Was 2% in first prototype + 0.5% after transport CERN to Fermilab)

Katja Kruger (DESY) – private comm.11

7.5 max

0.5

HCal Tile Size

-> Not much variation

However, improvement for 3 x 3 cm² vs 6 x 6 cm² tiles

- particularly for higher energy jets

M. Thomson arxiv.org: 0907.3577

Tile-tile gaps?

Tyvek tile wrapping

7.3 mil thick = 185 μ m -> tile-tile gap = 370 μ m

Offset tile layers?

Robotic assembly – pick, wrap, place (+offset?), edges of modules?

Steel plate thickness variations and sampling fraction

	Steel 19mm
Air 2.0 mm	Top plate 0.5 mm
apper 0.068 mm	Polyimide foil 0.115 mm
PCE	31.0mm
Scintillator 3.0mm	Reflector foil 0.1 mm
Bottom plate 0.5 mm	Reflector foil 0.1 mm
Steel 19mm	
Active	layer thickness = 7.383 mm

19mm steel plates.

Thickness tolerance?

ATLAS Tile Calorimeter

5mm steel plates (low Carbon rolled steel) ±0.03 mm single plate tolerance

SiD Hadron Calorimeter Factors affecting resolution/performance

Next:

- Evaluate parameters worth varying in simulation.
- Single particle tests.
- Test effects on jet energy resolution.
- Calibration/validation procedures

Extra

Fits to ECal + HCal energy distributions for MIP threshold 0.5 and 1.0

HCAL Threshold = 1, ECAL Threshold = 1	(30 GeV)
Info in <tcanvas::makedefcanvas>: created default TCanvas with n FCN=23.4779 FROM MIGRAD STATUS=CONVERGED 67 CALLS EDM=2.23554e-10 STRATEGY= 1 ERROR MA EXT PARAMETER STEP FI NO. NAME VALUE ERROR SIZE DERIV 1 Constant 6.42798e+01 2.78655e+00 5.21238e-03 -2.62 2 Mean 2.82600e+01 1.02038e-01 2.44801e-04 -2.67 3 Sigma 2.81373e+00 8.86744e-02 2.01175e-05 1.92 Energy Resolution = 0.0937908605773 +/- 0.0886744052577 tile size</tcanvas::makedefcanvas>	ame c1 68 TOTAL TRIX ACCURATE RST ATIVE 198e-07 198e-05 2925e-03 e = 30
HCAL Threshold = .5, ECAL Threshold =.5	(30 GeV)
Info in <tcanvas::makedefcanvas>: created default TCanvas with na FCN=44.2089 FROM MIGRAD STATUS=CONVERGED 60 CALLS EDM=2.01729e-07 STRATEGY= 1 ERROR MAT EXT PARAMETER STEP FIT NO. NAME VALUE ERROR SIZE DERIV/ 1 Constant 6.48830e+01 2.84391e+00 7.27940e-03 5.942 2 Mean 2.96535e+01 1.00075e-01 3.26432e-04 -4.833 3 Sigma 2.70488e+00 8.63146e-02 2.77868e-05 -2.253 Energy Resolution = 0.0901627736731 +/- 0.0863145570931 tile size</tcanvas::makedefcanvas>	ame c1 61 TOTAL TRIX ACCURATE RST ATIVE 204e-05 726e-03 348e-02 = 30
HCAL Threshold = 1, ECAL Threshold = 1	(40 GeV)
Info in <tcanvas::makedefcanvas>: created default TCanvas with FCN=17.2297 FROM MIGRAD STATUS=CONVERGED 68 CALLS EDM=1.2534e-07 STRATEGY= 1 ERROR MA EXT PARAMETER STEP F NO. NAME VALUE ERROR SIZE DERI 1 Constant 7.89563e+01 3.74743e+00 5.61805e-03 -1.5 2 Mean 3.76122e+01 1.33449e-01 2.65824e-04 1.5 3 Sigma 3.22920e+00 1.45672e-01 2.36239e-05 -1.2 Energy Resolution = 0.0807300355743 +/- 0.145672157677 tile size</tcanvas::makedefcanvas>	name c1 69 TOTAL TRIX ACCURATE IRST VATIVE 5268e-04 9074e-03 4523e-02 = 30
HCAL Threshold = .5, ECAL Threshold = .5	(40 GeV)