

"Tell me that you have found no sign of New Physics again, I dare you. I double dare you. Tell me one more goddamn time!"

Precision Predictions for BSM Models at the ILC

Sven Heinemeyer, IFT/IFCA (CSIC, Madrid/Santander)

virtual, 06/2021

- 1. Motivation
- 2. Challenge # 1: Precision predictions in the Collider Environment
- 3. Challenge # 2: Inclusion of best SM Prediction
- 4. Challenge # 3: Parameter scans and Renormalization
- 5. Conclusions

Motivation

. . .

Why should we care for predictions in concrete (UV-complete) BSM models?

EFTs have many virtues!

But they also have many (un?)known short-comings:

- all BSM physics is assumed to be very heavy, out of the direct reach of current/future colliders (Not my favorite future physics scenario ...)
- if one finds large effects in the EFT predictions,
 it is not clear whether this can be reproduced by any real model
- EFTs as such leave unclear to what underlying real model a certain effect corresponds
 ⇒ this requires a "model by model" prediction for the EFT

Let us assume that we do see a deviation from the SM

What do we learn from that? How do we learn something from that?

- ⇒ We have to compare the observed deviation with predicted deviations
- \Rightarrow Preferrably with the predicted deviations in a concrete models
- \Rightarrow We want to learn which physics is responsible for the deviations

Needed:

- sufficiently precise predictions in BSM model
- ... including uncertainty estimates
- Analysis of patterns of deviations?!
- Precise predictions in the ILC environment
- Inclusion of best SM prediction crucial
- Parameter scans possible?

Let us assume that we do see a deviation from the SM

What do we learn from that? How do we learn something from that?

- ⇒ We have to compare the observed deviation with predicted deviations
- \Rightarrow Preferrably with the predicted deviations in a concrete models
- \Rightarrow We want to learn which physics is responsible for the deviations

Needed:

- sufficiently precise predictions in BSM model
- ______ including uncertainty estimates
- Analysis of patterns of deviations?!
- Precise predictions in the ILC environment
- Inclusion of best SM prediction crucial
- Parameter scans possible?

 \leftarrow focus

 \leftarrow focus

 \Leftarrow focus

Challenge # 1: Precision Predictions in the Collider Environment

What I can do?!

What I cannot do!

Are there solutions? Easy solutions?

What I can do?!

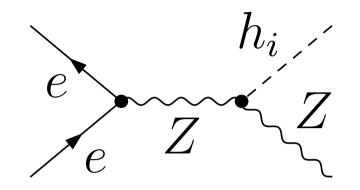
What I cannot do!

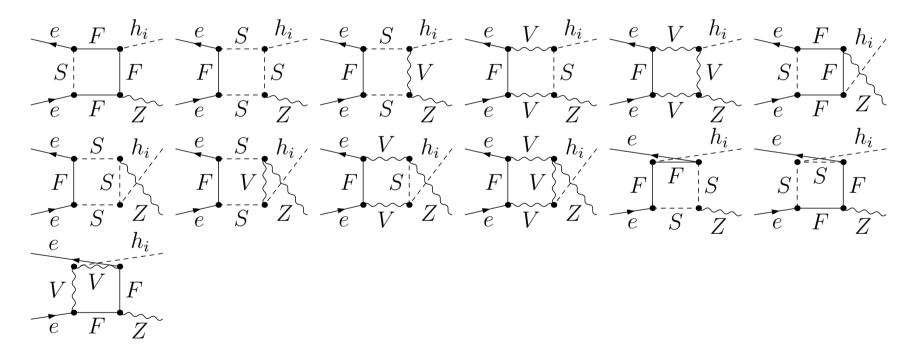
Are there solutions? Easy solutions?

I can do full one-loop calculations:

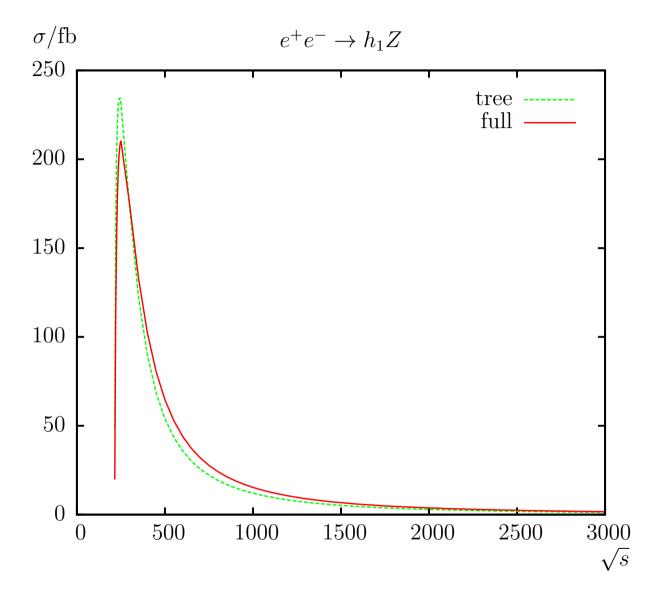
- BSM particle production
- BSM particle decay
- up to $2 \rightarrow 3$
- including QED (and QCD) radiation soft, hard, collinear, ...
- \Rightarrow caveats will come in the next two challenges ;-)

Prime example: $e^+e^- \rightarrow h_i Z$ (e.g. in multi-Higgs models/MSSM):





\rightarrow plust QED ISR etc. in $\mathcal{O}(\alpha)$



\Rightarrow loop corrections crucial

Sven Heinemeyer – IDT-WG3 "Modelling and Precision Theory" – 1st meeting, 10/06/2021

What I cannot do:

. . .

but I guess Whizard et al. can do at least in the SM ...

 \Rightarrow so I am here to learn/search cooperation/collaboration :-)

- embed these full one-loop calculations into the ILC environment
- include higher-order QED
- realistic treatment of particle decays
- realistic Monte Carlo generation of these events

What I cannot do:

. . .

but I guess Whizard et al. can do at least in the SM ...

 \Rightarrow so I am here to learn/search cooperation/collaboration :-)

- embed these full one-loop calculations into the ILC environment
- include higher-order QED
- realistic treatment of particle decays
- realistic Monte Carlo generation of these events

Are there solutions? Easy solutions? Also for external BSM particles?

What I cannot do:

. . .

but I guess Whizard et al. can do at least in the SM ...

 \Rightarrow so I am here to learn/search cooperation/collaboration :-)

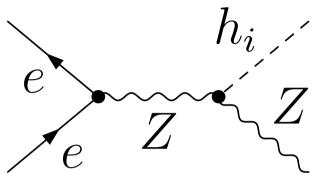
- embed these full one-loop calculations into the ILC environment
- include higher-order QED
- realistic treatment of particle decays
- realistic Monte Carlo generation of these events

Are there solutions? Easy solutions? Also for external BSM particles?

 \Rightarrow other challenges may make the life more complicated . . .

Challenge # 2: Inclusion of best SM prediction

Coming back to the prime example, focusing on a h_i at ~ 125 GeV:



Something crucial is missing to be able to find deviations from $e^+e^- \rightarrow H_{\rm SM}Z$

 \Rightarrow Inclusion of "best" SM prediction (of the "hard process")

- SM: full one-loop plus $\mathcal{O}(\alpha \alpha_s)$
- SM: Ayres is working on the rest \Rightarrow next talk?!

Q: how can one include beyond one-loop SM corrections?

- ... in an easy/fast way (ready for parameter scans)?
- ... avoiding double counting (SM-like loops in BSM calculation)?

To my knowledge: Only known solved case (in the MSSM): M_W

SM result for M_W :

- full one-loop
- full two-loop
- leading 3-loop via $\Delta \rho$ (not yet n_f^3 ;-)
- leading 4-loop via $\Delta\rho$

Best MSSM result for M_W :

[S.H., W. Hollik, G. Weiglein, L. Zeune '13]

- full SM result (via fit formel) [M. Awramik, M. Czakon, A. Freita, G. Weiglein '03]
- full MSSM one-loop (subtracting H_{SM} contributions)
- all existing two-loop $\Delta \rho$ contributions ($\Delta \rho^{\alpha \alpha_s}$, $\Delta \rho^{\alpha_t^2, \alpha_t \alpha_b, \alpha_b^2}$)

\Rightarrow much more complicated for collider processes!

BSM models have several problems:

Problem # 1:

we do not know the values of the BSM parameters

 \Rightarrow "normal" in the investigation of BSM models: parameter scans or at least predictions as a function of the relevant parameters

Problem # 2:

External (BSM) particles should be on-shell particles

- \Rightarrow OS renormalization of BSM model required
- ⇒ known cases that no "good" renormalization scheme exists for the "full" parameter space
- \Rightarrow point-by-point decision on RS?!

Example: chargino/neutralino renormalization in the MSSM:

4+2 masses, but only 3 free parameters: M_1 , M_2 , $\mu \Rightarrow OS$ renormalization for 3 masses:

[S.H., C. Schappacher '17]

$$\begin{aligned} \mathsf{CCN1:} \left(\left[\widetilde{\mathsf{Re}} \widehat{\Sigma}_{\widetilde{\chi}^{-}}(p) \right]_{ii} \widetilde{\chi}_{i}^{-}(p) \right) \Big|_{p^{2} = m_{\widetilde{\chi}_{i}^{\pm}}^{2}} &= 0 \qquad (i = 1, 2) \ , \\ \left(\left[\widetilde{\mathsf{Re}} \widehat{\Sigma}_{\widetilde{\chi}^{0}}(p) \right]_{11} \widetilde{\chi}_{1}^{0}(p) \right) \Big|_{p^{2} = m_{\widetilde{\chi}_{1}^{0}}^{2}} &= 0 \end{aligned}$$

⇒ Scheme can easily be extended to other variants, e.g. CCNi (i = 1, 2, 3, 4) or CNNijk (i = 1, 2; j, k = 1, 2, 3, 4)

 \Rightarrow relevant for $|\mu| \approx M_2 \quad \Rightarrow \mathsf{CCN}i$ breaks down

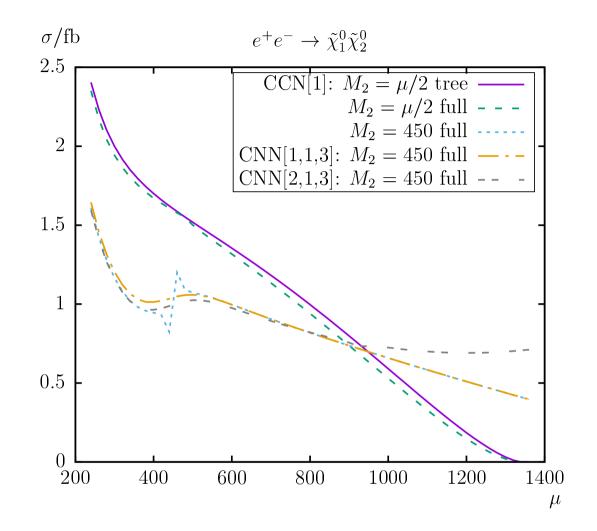
⇒ Scheme requires a shift of three (neutralino) masses to their OS value:

$$\Delta m_{\tilde{\chi}_{i}^{0}} = -\frac{1}{2} \operatorname{Re} \Big\{ m_{\tilde{\chi}_{i}^{0}} \left(\hat{\Sigma}_{\tilde{\chi}_{i}^{0}}^{L}(m_{\tilde{\chi}_{i}^{0}}^{2}) + \hat{\Sigma}_{\tilde{\chi}_{i}^{0}}^{R}(m_{\tilde{\chi}_{i}^{0}}^{2}) \right) + \hat{\Sigma}_{\tilde{\chi}_{i}^{0}}^{SL}(m_{\tilde{\chi}_{i}^{0}}^{2}) + \hat{\Sigma}_{\tilde{\chi}_{i}^{0}}^{SR}(m_{\tilde{\chi}_{i}^{0}}^{2}) \Big\}$$

$$m_{\tilde{\chi}_{i}^{0}}^{OS} = m_{\tilde{\chi}_{i}^{0}} + \Delta m_{\tilde{\chi}_{i}^{0}}^{OS}$$

⇒ large (unphysical) shifts possible for wrong RS choice

[S.H., C. Schappacher '17]



 \Rightarrow CCN1 breaks down for $\mu = M_2 \Rightarrow$ other schemes!

In our example:

 \Rightarrow CCN1 breaks down for $\mu = M_2 \Rightarrow$ other schemes!

- which other scheme is good in this parameter region?
- does a "best" RS exist?
- how to choose the "best" RS?
- the problem becomes visible shown as a continous function of one parameter!
 But how to handle this in a (random) parameter scan?

Needed:

Automated scheme choice that works for single points

 \Rightarrow inclusion into codes for "ILC realistic predictions"!

Conclusions

• High precision prediction for SM/BSM processes needed for the detection of BMS physics at the ILC

 <u>Challenge # 1:</u> How to include full 1-loop BSM prediction into "ILC realistic predictions"?

Are there solutions? Easy solutions? Also for external BSM particles?

 Challenge # 2: Inclusion of "best" SM pred. ⇒ crucial for detection of BSM effects Needed in an easy/fast way (ready for parameter scans)
 ...avoiding double counting (SM-like loops in BSM calculation)

• Challenge # 3:

OS renormalization of BSM models required

 \rightarrow known cases that no "good" renormalization scheme exists for the "full" parameter space

Needed: Automated scheme choice that works for single points

 \Rightarrow inclusion into codes for "ILC realistic predictions"!

• Not covered: uncertainty estimates for BSM predictions

Further Questions?

Sven Heinemeyer – IDT-WG3 "Modelling and Precision Theory" – 1st meeting, 10/06/2021

cMSSM parameters:

Table 2: MSSM default parameters for the numerical investigation; all parameters (except of t_{β}) are in GeV (calculated masses are rounded to 1 MeV). The values for the trilinear sfermion Higgs couplings, $A_{t,b,\tau}$ are chosen such that charge- and/or color-breaking minima are avoided [76], and $A_{b,\tau}$ are chosen to be real. It should be noted that for the first and second generation of sfermions we chose instead $A_f = 0$, $M_{\tilde{Q},\tilde{U},\tilde{D}} = 1500$ GeV and $M_{\tilde{L},\tilde{E}} = 500$ GeV.

Scen.	\sqrt{s}	t_{β}	μ	$M_{H^{\pm}}$	$M_{\tilde{Q},\tilde{U},\tilde{D}}$	$M_{\tilde{L},\tilde{E}}$	$ A_{t,b,\tau} $	M_1	M_2	M_3
8	1000	7	200	300	1000	500	$1500 + \mu/t_{\beta}$	100	200	1500
					m_{h_1} m_{h_2}		m_{h_3}			

123.404	288.762	290.588

with \sqrt{s} , $M_{H^{\pm}}$, $\tan\beta$, ϕ_{A_t} varied

- Scenario chosen such that many processes are possible at the same time

- not chosen to maximize loop corrections

Numerical example scenario for $\tilde{\chi}_1^0 \tilde{\chi}_2^0$ production:

\sqrt{s}	aneta	μ	$M_{H^{\pm}}$	$M_{\tilde{Q},\tilde{U},\tilde{D}}$	$M_{\tilde{L},\tilde{E}}$	$ A_t $	A_b	A_{τ}	$ M_1 $	M_2	M_3
1000	10	450	500	1500	1500	2000	$ A_t $	$M_{\tilde{L}}$	$\mu/$ 4	$\mu/2$	2000
	$m_{ ilde{\chi}_1^\pm}$		$m_{ ilde{\chi}_2^\pm}$ n		$n_{ ilde{\chi}_1^0}$	$m_{ ilde{\chi}^{ extsf{0}}_{ extsf{2}}}$		$m_{ ilde{\chi}_{ extsf{3}}^{ extsf{0}}}$		$m_{ ilde{\chi}_4^{0}}$	
tree	212.7	760	469.874	4 110.4	34 21	3.002	455.1	L62	469.22	26	
CCN1	212.7	760	469.874	4 110.4	34 21	2.850	455.1	195	469.56	0	

Parameters varied: \sqrt{s} , μ , $M_{\tilde{L},\tilde{E}}$, $\tan\beta$, φ_{M_1} , ϕ_{A_t}

- in agreement with exp. data
- opens up many (all) production channels
- relevant parameters varied

. . .

\Rightarrow show some relevant examples