Theory needs for future e^+e^- colliders

A. Freitas University of Pittsburgh

- "Other" electroweak parameters ("input" parameters)
- Z pole & WW
- Electroweak precision at $\sqrt{s} = 250 \text{ GeV}$
- Higgs physics

Need for theory input

- Comparison of EWPOs / HPOs with SM to **probe new physics** \rightarrow multi-loop corrections in full SM
- Extraction of EWPOs / HPOs (pseudo-observables) from real observables $\rightarrow \text{QED/QCD, MC tools} \rightarrow \text{talk by S. Jadach}$
- "Other" eletroweak parameters ("input" parameters) $\rightarrow m_t, \alpha_s$, etc. extracted from other processes

Reviews: 1906.05379, 2012.11642

- M_Z , Γ_Z : From $\sigma(\sqrt{s})$ lineshape; δM_Z , $\delta \Gamma_Z \sim 0.1$ MeV at FCC-ee \rightarrow Main theory uncertainties: QED ISR \rightarrow talk by S. Jadach
- m_t : Current status $\delta m_t \sim 0.3$ GeV at LHC \rightarrow Additional theory uncertainties?

Butenschoen et al. '16

PDG '20

Ferrario Ravasio, Nason, Oleari '18

From
$$e^+e^- \rightarrow t\bar{t}$$
 at $\sqrt{s} \sim 350$ GeV today:

$$\delta m_{t}^{\overline{\text{MS}}} = []_{\text{exp}}$$

$$\oplus [50 \text{ MeV}]_{\text{QCD}}$$

$$\oplus [10 \text{ MeV}]_{\text{mass def.}}$$

$$\oplus [70 \text{ MeV}]_{\alpha_{s}}$$

$$> 100 \text{ MeV}$$

Reviews: 1906.05379, 2012.11642

- M_Z , Γ_Z : From $\sigma(\sqrt{s})$ lineshape; δM_Z , $\delta \Gamma_Z \sim 0.1$ MeV at FCC-ee \rightarrow Main theory uncertainties: QED ISR \rightarrow talk by S. Jadach
- m_t : Current status $\delta m_t \sim 0.3$ GeV at LHC \rightarrow Additional theory uncertainties?

PDG '20

- Butenschoen et al. '16
- Ferrario Ravasio, Nason, Oleari '18

From
$$e^+e^- \rightarrow t\bar{t}$$
 at $\sqrt{s} \sim 350 \text{ GeV}$

today:

future:

 $\delta m_{t}^{\overline{\text{MS}}} = []_{\text{exp}}$ $\oplus [50 \text{ MeV}]_{\text{QCD}}$ $\oplus [10 \text{ MeV}]_{\text{mass def.}}$ $\oplus [70 \text{ MeV}]_{\alpha_{s}}$ > 100 MeV

 $\begin{array}{l} [20 \text{ MeV}]_{\text{exp}} \\ \oplus [30 \text{ MeV}]_{\text{QCD}} \quad (\text{h.o. resummation}) \\ \oplus [10 \text{ MeV}]_{\text{mass def.}} \\ \oplus [15 \text{ MeV}]_{\alpha_{\text{s}}} \quad (\delta \alpha_{\text{s}} \lesssim 0.0002) \\ \lesssim 50 \text{ MeV} \end{array}$

- m_b, m_c : From quarkonia spectra using Lattice QCD $\delta m_b^{\overline{\text{MS}}} \sim 30 \text{ MeV}, \delta m_b^{\overline{\text{MS}}} \sim 25 \text{ MeV}$ LHC HXSWG '16 \rightarrow estimated improvements $\delta m_b^{\overline{\text{MS}}} \sim 13 \text{ MeV}, \delta m_b^{\overline{\text{MS}}} \sim 7 \text{ MeV}$ Lepage, Mackenzie, Peskin '14
- $M_{\rm H}$: from kinematic constraint fits $HZ(\ell\ell)$, $H(b\overline{b})Z \rightarrow \delta M_{\rm H} \sim 10...20 \text{ MeV}$
 - \rightarrow theory errors subdominant

Strong coupling

Strong coupling

Shift of finestructure constant

- $\Delta \alpha_{had}$: Could be limiting factor
 - a) From $e^+e^- \rightarrow$ had. using dispersion relation Current: $\delta(\Delta \alpha_{had}) \sim 10^{-4}$ Improvement to $\delta(\Delta \alpha_{had}) \sim 5 \times 10^{-5}$ likely
 - b) Direct determination at FCC-ee from $e^+e^- \rightarrow \mu^+\mu^-$ off the Z peak (i.e. $A_{\text{FB}}^{\mu\mu}$ at $\sqrt{s} \sim 88$ GeV and $\sqrt{s} \sim 95$ GeV) $\rightarrow \delta_{\text{th}}(\Delta \alpha_{\text{had}}) \sim 3 \times 10^{-5}$ Janot '15

Requires high-precision theory prediction for $e^+e^- \rightarrow \mu^+\mu^$ including 2/3-loop corrections for γ -exchange and box contributions

Z pole and WW

Z cross section and branching fractions

Z-pole asymmetries

Left-right asymmetry:

With polarized e^- beam:

$$A_{\mathsf{LR}} \equiv \frac{\sigma_{\mathsf{L}} - \sigma_{\mathsf{R}}}{\sigma_{\mathsf{L}} + \sigma_{\mathsf{R}}} = \mathcal{A}_{e}$$

Polarization asymmetry: Average τ pol. in $e^+e^- \rightarrow \tau^+\tau^-$: $\langle \mathcal{P}_\tau \rangle = -\mathcal{A}_\tau$

Z lineshape

• Deconvolution of initial-state QED radiation: $\sigma[e^+e^- \to f\bar{f}] = \mathcal{R}_{\text{ini}}(s, s') \otimes \sigma_{\text{hard}}(s')$

Subtraction of γ -exchange, γ -Z interference, box contributions:

 $\sigma_{\text{hard}} = \sigma_{\text{Z}} + \sigma_{\gamma} + \sigma_{\gamma\text{Z}} + \sigma_{\text{box}}$

■ *Z*-pole contribution:

$$\sigma_{\mathsf{Z}} = \frac{R}{(s - \overline{M}_{\mathsf{Z}}^2)^2 + \overline{M}_{\mathsf{Z}}^2 \overline{\Gamma}_{\mathsf{Z}}^2} + \sigma_{\mathsf{non-res}}$$

 $\sigma_{\gamma}, \sigma_{\gamma Z}, \sigma_{\text{box}}, \sigma_{\text{non-res}}$ known at NLO \rightarrow need consistent pole expansion framework \rightarrow leading NNLO may be needed for FCC-ee/CEPC

WW threshold

- High-precision measurement of M_W from $e^+e^- \rightarrow W^+W^-$ at threshold
- a) Corrections near threshold enhanced by $1/\beta$ and $\ln \beta$ $\beta \sim \sqrt{1 - 4 \frac{M_W^2 - iM_W\Gamma_W}{s}} \sim \sqrt{\Gamma_W/M_W}$

b) Non-resonant contributions are important

- Full $\mathcal{O}(\alpha)$ calculation of $e^+e^- \rightarrow 4f$ Denner, Dittmaier, Roth, Wieders '05
- EFT expansion in $\alpha \sim \Gamma_W/M_W \sim \beta^2$ Beneke, Falgari, Schwinn, Signer, Zanderighi '07
 - NLO corrections with NNLO Coulomb correction ($\propto 1/\beta^n$): $\delta_{th}M_W \sim 3 \text{ MeV}$ Actis, Beneke, Falgari, Schwinn '08
 - Adding NNLO corrections to $ee \rightarrow WW$ and $W \rightarrow f\bar{f}$ and NNLO ISR: $\delta_{th}M_W \lesssim 0.6 \text{ MeV}$

Comparison of EWPOs with theory

- To probe new physics, compare EWPOs with SM theory predictions
- Need to take theory error into account:

	Current exp.	Current th. [†]	CEPC	FCC-ee
M_{W}^* [MeV]	15	4	1	1
Γ_Z [MeV]	2.3	0.4	0.5	0.1
$R_{\ell} = \Gamma_{Z}^{had} / \Gamma_{Z}^{\ell} [10^{-3}]$	25	5	2	1
$R_b = \Gamma_Z^b / \Gamma_Z^{\text{had}} [10^{-5}]$	66	10	4.3	6
$\sin^2 heta_{ m eff}^\ell$ [10 $^{-5}$]	16	4.5	<1	0.5

* computed from G_{μ}

[†] NNLO and leading 3/4-loop (enhanced by Y_t and/or N_f)

	CEPC	perturb. error with 3-loop [†]	Param. error	main
M _W [MeV]	1	1	2.1	$m_{\rm t}, \Delta \alpha$
Γ_Z [MeV]	0.5	0.15	0.15	$m_{t}, lpha_{S}$
$R_b [10^{-5}]$	4.3	5	< 1	-
$\sin^2 \theta_{\rm eff}^{\ell}$ [10 ⁻⁵]	<1	1.5	2	m_{t} , $\Delta lpha$

[†] Theory scenario: $\mathcal{O}(\alpha \alpha_s^2)$, $\mathcal{O}(N_f \alpha^2 \alpha_s)$, $\mathcal{O}(N_f^2 \alpha^2 \alpha_s)$, leading 4-loop $(N_f^n = \text{at least } n \text{ closed fermion loops})$

Parametric inputs:

***CEPC:** $\delta m_t = 600 \text{ MeV}, \ \delta \alpha_s = 0.0002, \ \delta M_Z = 0.5 \text{ MeV}, \ \delta(\Delta \alpha) = 5 \times 10^{-5}$

	FCC-ee	perturb. error with 3-loop [†]	Param. error FCC-ee*	main source
M_{W} [MeV]	1	1	0.6	$\Delta \alpha$
Γ_Z [MeV]	0.1	0.15	0.1	$lpha_{ extsf{S}}$
$R_b [10^{-5}]$	6	5	< 1	
$\sin^2 heta_{ m eff}^\ell$ [10 $^{-5}$]	0.5	1.5	1	$\Delta \alpha$

[†] Theory scenario: $\mathcal{O}(\alpha \alpha_s^2)$, $\mathcal{O}(N_f \alpha^2 \alpha_s)$, $\mathcal{O}(N_f^2 \alpha^2 \alpha_s)$, leading 4-loop $(N_f^n = \text{at least } n \text{ closed fermion loops})$

Parametric inputs:

*FCC-ee: $\delta m_t = 50 \text{ MeV}, \delta \alpha_s = 0.0002, \delta M_Z = 0.1 \text{ MeV}, \delta(\Delta \alpha) = 3 \times 10^{-5}$

Electroweak precision at $\sqrt{s}=250~{ m GeV}$

EWPOs accessible through radiative return $e^+e^- \rightarrow \gamma Z$

- $\blacksquare \ \gamma$ mostly collinear with beam
- Reduction in cross-section by $\sim \frac{\alpha}{\pi} \ln \frac{s}{m_{\rm A}^2} \sim 0.06$
- Precise det. of m_{ff} from measured angles:

$$m_{ff}^2 = s \frac{1-\beta}{1+\beta}, \quad \beta = \frac{|\sin(\theta_1 + \theta_2)|}{\sin\theta_1 + \sin\theta_2}$$

Additional backgrounds from $e^+e^- \rightarrow WW, ZZ$ that are not flat in m_{ff} Ueno '19

Fujii et al. '19

- $A_{LR} \rightarrow \sin^2 \theta_{eff}^{\ell}$ (limited by sys. err. on beam polarization)
- $A_{\mathsf{FB}}^{\mu,\tau,b}$ (statistics limited)
- R_{ℓ} , R_c , R_b (limited by sys. err. on flavor tag)
- No competitive measurements on M_Z , Γ_Z , σ^0 (need to use LEP values)

$Z\gamma$ electroweak precision: theory input

$$\mathcal{R}_{\text{ini}} = \sum_{n} \left(\frac{\alpha}{\pi}\right)^{n} \sum_{m=0}^{n} h_{nm} \ln^{m} \left(\frac{s}{m_{e}^{2}}\right)$$

Universal (m=n) logs known to n = 6, also some sub-leading terms Ablinger, Blümlein, De Freitas, Schönwald '20

Exclusive description: MC tools

Subleading effects: Radiative corrections to $e^+e^- \rightarrow f\bar{f}\gamma (+n\gamma)$

• Some corrections cancel for A_{LR}, A_{FB}, BRs

• NLO for
$$ee \to f\bar{f}\gamma$$

+ NNLO for $ee \to Z\gamma$,

 $Z \to f \overline{f}$ could be sufficient

<u>W mass</u>

W mass measurement from $e^+e^- \rightarrow WW$: Baak et al. '13 $\ell \nu_{\ell} \ell' \nu_{\ell'}$: Endpoints of E_{ℓ} or other distributions $\ell \nu_{\ell} j j$: Kinematic reconstruction

■ *jjjj*: Systematic uncertainty from color reconnection

Expected precision with $\mathcal{L}_{int} = 2 \text{ ab}^{-1}$ at $\sqrt{s} = 250 \text{ GeV}$: $\Delta M_W \approx 2.5 \text{ MeV}$

Theory needs: Small impact of loop corrections, but accurate decription of FSR QED effects needed

Reviews: 1404.0319, 1906.05379

hbb: [CEPC: 2.0%, FCC-ee: 0.8%]

- $\mathcal{O}(\alpha_s^4)$ QCD corrections
- $\mathcal{O}(\alpha)$ QED+EW
- leading $\mathcal{O}(\alpha^2)$ and $\mathcal{O}(\alpha\alpha_s)$ for large $m_t \rightarrow$ Use for error estimate

Current theory error: $\Delta_{th} < 0.4\%$ With full 2-loop: $\Delta_{th} \sim 0.2\%$

Parametric error:

$$\left. \begin{array}{l} \delta m_b = 0.030 \; {\rm GeV} \\ \delta \alpha_{\rm S} = 0.001 \end{array} \right\} \rightarrow \Delta_{\rm par} \approx 1.4\%$$

$$\left. \begin{array}{l} \delta m_b = 0.013 \; {\rm GeV} \\ \delta \alpha_{\rm S} = 0.0002 \end{array} \right\} \rightarrow \Delta_{\rm par} \approx 0.6\%$$

Baikov, Chetyrkin, Kühn '05

Dabelstein, Hollik '92; Kniehl '92

Kwiatkowski, Steinhauser '94 Butenschoen, Fugel, Kniehl '07 hττ: [CEPC: 2.4%, FCC-ee: 1.1%]

With full 2-loop (no QCD): $\Delta_{th} < 0.1\%$

Parametric error negligible

hWW*/hZZ*: [CEPC: 2.2%, FCC-ee: 0.4%]

- complete $\mathcal{O}(\alpha) + \mathcal{O}(\alpha_s)$ for $h \to 4f$ Bredenstein, Denner, Dittmaier, Weber '06
- leading $\mathcal{O}(\alpha^2)$, $\mathcal{O}(\alpha\alpha_s)$ and $\mathcal{O}(\alpha\alpha_s^2)$ for large m_t Djouadi, Gambino, Kniehl '97

 \rightarrow Small (0.2%) effect

Ma, Wang, Xu, Yang, Zhou '21

Kniehl, Veretin '12

Theory error: $\Delta_{th,EW} < 0.3\%$, $\Delta_{th,QCD} < 0.5\%$

With NNLO final-state QCD corrections: $\Delta_{th,QCD} < 0.1\%$

Parametric error:

 $\delta M_{\rm H} \sim 10 \; {\rm MeV} \; \rightarrow \Delta_{\rm par} \approx 0.1\%$

Note: Distributions affected by corrections \rightarrow implementation into MC tools

SM predictions for Higgs decays

hgg: [CEPC: 2.4%, FCC-ee: 1.6%]

- $\mathcal{O}(\alpha_s^2)$ and $\mathcal{O}(\alpha_s^3)$ (in large m_t -limit) QCD corrections Baikov, Chetyrkin '06 Schreck, Steinhauser '07
- $\mathcal{O}(\alpha)$ EW Aglietti, Bonciani, Degrassi, Vicini '04; Degrassi, Maltoni '04

Theory error (dominated by QCD): $\Delta_{th} \approx 3\%$ With $\mathcal{O}(\alpha_s^4)$ in large m_t -limit (4-loop massless QCD diags.): $\Delta_{th} \approx 1\%$

Parametric error: $\delta \alpha_{s} = 0.001 \rightarrow \Delta_{par} \approx 3\%$ $\delta \alpha_{s} = 0.0001 \rightarrow \Delta_{par} \approx 0.3\%$

h $\gamma\gamma$: [CEPC: 3.2%, FCC-ee: 3.0%]

- $\mathcal{O}(\alpha_s^2)$ QCD corrections Zheng, Wu '90; Djouadi, Spira, v.d.Bij, Zerwas '91 Dawson, Kauffman '93; Maierhöfer, Marquard '12
- O(α) EW
 Aglietti, Bonciani, Degrassi, Vicini '04; Degrassi, Maltoni '04
 Actis, Passarino, Sturm, Uccirati '08

Theory error: $\Delta_{th} < 1\%$

Parametric error negligible

SM predictions for Higgs production

- hZ production: dominant at $\sqrt{s} \sim 240 \text{ GeV}$
- WW fusion: sub-dominant but useful for constraining *h* width Han, Liu, Sayre '13

SM predictions for Higgs production

hZ production: [CEPC: 0.5%, FCC-ee: 0.3%]

 O(α) corr. to hZ production and Z decay

Kniehl '92; Denner, Küblbeck, Mertig, Böhm '92 Consoli, Lo Presti, Maiani '83; Jegerlehner '86

Akhundov, Bardin, Riemann '86

Denner, Dittmaier, Roth, Weber '03

• Technology for $\mathcal{O}(\alpha)$ with off-shell Z-boson available Boudjema et al. '04

- Can be combined with h.o. ISR QED radiation
- $\mathcal{O}(\alpha \alpha_{s})$ corrections

Greco et al. '17

Gong et al. '16 Chen, Feng, Jia, Sang '18

Theory error: $\Delta_{\text{th}} \sim O(1\%)$

With full 2-loop corrections for $ee \rightarrow HZ: \Delta_{th} \leq O(0.3\%)$

Parametric error: negligible if $\delta M_{\rm H} < 100 \ {\rm MeV}$

SM predictions for Higgs production

WW fusion:

O(α) corrections
 with h.o. ISR

Belanger et al. '02; Denner, Dittmaier, Roth, Weber '03

Theory error: $\Delta_{\text{th}} \sim O(1\%)$?

Parametric error: negligible

Full $\mathcal{O}(\alpha^2)$ calculation for 2 \rightarrow 3 process is very challenging \rightarrow Contributions with closed fermion loops maybe feasible

<u>Summary</u>

For Higgs and WW physics:

- Full NNLO for 2 \rightarrow 2 processes
- $\mathcal{O}(\alpha_s^4)$ QCD corrections
- Matching to Monte-Carlo tools
- Also need $O(\alpha)$ (or better?) corrections for backgrounds: $e^+e^-b\overline{b}$, $\nu\overline{\nu}b\overline{b}$, etc.
 - \rightarrow Technology exists, but work needed Denner, Dittmaier, Roth, Wieders '05

For Z pole:

- 3-loop EW and mixed EW-QCD corrections for Zff vertices
- Leading 4-loop effects
- Initial-final QED effects / mergering multi-loop and Monte-Carlo

Input parameters:

- Direct determination of α_s , m_t , $\alpha(M_Z)$ at e^+e^- colliders is important
- Perturbative and non-perturbative theory uncertainties need improvement
- Lower-energy experiments can provide additional input (BELLE II, BES, ...)

Summary

For Higgs and WW physics:

- $\bullet\,$ Full NNLO for 2 \rightarrow 2 processes
- $\mathcal{O}(\alpha_s^4)$ QCD corrections
- Matching to Monte-Carlo tools
- Also need $O(\alpha)$ (or better?) corrections for backgrounds: $e^+e^-b\overline{b}$, $\nu\overline{\nu}b\overline{b}$, etc.
 - ightarrow Technology exists, but work needed
- Denner, Dittmaier, Roth, Wieders '05

EW precision at ILC-250:

- Similar physics goals as GigaZ/TeraZ, but with reduced precision
- Theory: NNLO for 2 \rightarrow 2 processes, ISR resummation, and ...?
- Open question: Direct determination of α_s and $\alpha(s)$

Backup slides

Calculational techniques

Experimental precision requires inclusion of **radiative corrections** in theory (1-loop, 2-loop, and partial 3-loop)

Integrals over loop momenta:

$$\int d^4q_1 d^4q_2 f(q_1, q_2, p_1, p_2, ..., m_1, m_2, ...)$$

Computer algebra tools:

J

- Generation of diagrams, $\mathcal{O}(100) \mathcal{O}(10000)$
- Lorentz and Dirac algebra
- Integral simplification (and expansion)

Evaluation of loop integrals:

- In general not possible analytically
- Numerical methods are more general, but computing intensive
- Special numerical techniques can balance precision and evaluation time

Analytic calculations

- Mostly used for diagrams with few mass scales
- Reduce to master integrals with integration-by-parts and other identities Chetyrkin, Tkachov '81; Gehrmann, Remiddi '00; Laporta '00; ...

Public programs:	Reduze	von Manteuffel, Studerus '12
	FIRE	Smirnov '13,14
	LiteRed	Lee '13
	KIRA	Maierhoefer, Usovitsch, Uwer '17

 \rightarrow Large need for computing time and memory

- Evaluate master integrals with differential equations or Mellin-Barnes rep. Kotikov '91; Remiddi '97; Smirnov '00,01; Henn '13;...
 - → Result in terms of Goncharov polylogs / multiple polylogs
 - → Some problems need iterated elliptic integrals / elliptic multiple polylogs Broedel, Duhr, Dulat, Trancredi '17,18 Ablinger er al. '17

Asymptotic expansions

- Exploit large mass ratios, $e. g. M_Z^2/m_t^2 \approx 1/4$
- Evaluate coeff. integrals analytically
- Fast numerical evaluation
- \rightarrow Used in some 2/3-scale problems
- \rightarrow Public programs:
 - exp Harlander, Seidensticker, Steinhauser '97
 - asy Pak, Smirnov '10
- → Possible limitations:
 - Difficult coefficient integrals
 - bad convergence

Numerical integration

Two general approches:

- \rightarrow Automated treatment of UV/IR divergencies
- \rightarrow No restriction on number of loops or legs

Sector decomposition:

Public programs:(py) SecDecCarter, Heinrich '10;Borowka et al. '12,15,17FIESTASmirnov, Tentyukov '08;Smirnov '13,15

Mellin-Barnes representations:

Public programs:MB/MBresolveCzakon '06; Smirnov, Smirnov '09AMBRE/MBnumericsGluza, Kajda, Riemann '07
Dubovyk, Gluza, Riemann '15
Usovitsch, Dubovyk, Riemann '18

Diagrams with internal thresholds can cause numerical instabilities

 Specialized techniques (for some type of diagrams) often improve computing time, robustness, precision (but not automated)

Specialized numerical techniques

Example: HZ double boxes Song, Freitas '21

- Introduce Feynman parameters and disp. rel.
- Expressions for second loop from, e.g., LoopTools Hahn, Perez-Victoria '98
- 3-dim. numerical integral with adaptive Gaussian integration
- \$\mathcal{O}(0.1\%)\$ precision in \$\mathcal{O}(min.)\$ on laptop

Z lineshape

• Deconvolution of initial-state QED radiation: $\sigma[e^+e^- \to f\bar{f}] = \mathcal{R}_{\text{ini}}(s, s') \otimes \sigma_{\text{hard}}(s')$

Subtraction of γ -exchange, γ -Z interference, box contributions:

 $\sigma_{\text{hard}} = \sigma_{\text{Z}} + \sigma_{\gamma} + \sigma_{\gamma\text{Z}} + \sigma_{\text{box}}$

■ *Z*-pole contribution:

$$\sigma_{\mathsf{Z}} = \frac{R}{(s - \overline{M}_{\mathsf{Z}}^2)^2 + \overline{M}_{\mathsf{Z}}^2 \overline{\Gamma}_{\mathsf{Z}}^2} + \sigma_{\mathsf{non-res}}$$

In experimental analyses:

$$\sigma \sim \frac{1}{(s - M_Z^2)^2 + s^2 \Gamma_Z^2 / M_Z^2}$$

$$\overline{M}_{Z} = M_{Z} / \sqrt{1 + \Gamma_{Z}^{2} / M_{Z}^{2}} \approx M_{Z} - 34 \text{ MeV}$$
$$\overline{\Gamma}_{Z} = \Gamma_{Z} / \sqrt{1 + \Gamma_{Z}^{2} / M_{Z}^{2}} \approx \Gamma_{Z} - 0.9 \text{ MeV}$$

<u>"Hard" matrix element</u>

Consistent (gauge-invariant) theory setup: Expansion of $\mathcal{A}[e^+e^- \rightarrow \mu^+\mu^-]$ about $s_0 = M_Z^2 - iM_Z\Gamma_Z$:

$$\mathcal{A}[e^+e^- \to f\bar{f}] = \frac{R}{s-s_0} + S + (s-s_0)T + \dots$$
$$R = g_Z^e(s_0)g_Z^f(s_0)$$
$$S = \left[\frac{1}{M_Z^2}g_\gamma^e g_\gamma^f + g_Z^e g_Z^{f\prime} + g_Z^{e\prime} g_Z^f + S_{\text{box}}\right]_{s=s_0}$$

 $g_{V}^{f}(s)$: effective $Vf\bar{f}$ couplings

At NNLO: Need R at $\mathcal{O}(\alpha^2)$, S at $\mathcal{O}(\alpha)$, etc.

Z decay

Factorization of massive and QED/QCD FSR:

$$\overline{\Gamma}_{f} \approx \frac{N_{c}\overline{M}_{Z}}{12\pi} \Big[\Big(\mathcal{R}_{V}^{f} |g_{V}^{f}|^{2} + \mathcal{R}_{A}^{f} |g_{A}^{f}|^{2} \Big) \frac{1}{1 + \operatorname{Re} \Sigma_{Z}^{\prime}} \Big]_{s = \overline{M}_{Z}^{2}}$$

 $\begin{array}{ll} \mathcal{R}^{f}_{V}, \ \mathcal{R}^{f}_{A} &: \mbox{Final-state QED/QCD radiation}; \\ \mbox{known to } \mathcal{O}(\alpha_{s}^{4}), \ \mathcal{O}(\alpha^{2}), \ \mathcal{O}(\alpha\alpha_{s}) & \mbox{Kataev '92} \\ & \mbox{Chetyrkin, Kühn, Kwiatkowski '96} \\ & \mbox{Baikov, Chetyrkin, Kühn, Rittinger '12} \end{array}$

 g_V^f , g_A^f , Σ_Z' : Electroweak corrections

Z decay

Factorization of massive and QED/QCD FSR:

$$\overline{\Gamma}_{f} \approx \frac{N_{c}\overline{M}_{Z}}{12\pi} \Big[\Big(\mathcal{R}_{V}^{f} |g_{V}^{f}|^{2} + \mathcal{R}_{A}^{f} |g_{A}^{f}|^{2} \Big) \frac{1}{1 + \operatorname{Re} \Sigma_{Z}^{\prime}} \Big]_{s = \overline{M}_{Z}^{2}}$$

Additional non-factorizable contributions, e.g.

 \rightarrow Known at $\mathcal{O}(\alpha \alpha_{s})$ Czarnecki, Kühn '96 Harlander, Seidensticker, Steinhauser '98

 \rightarrow Currently not known at $\mathcal{O}(\alpha^2)$ and beyond

- $\rightarrow \mathcal{O}(0.01\%)$ uncertainty on Γ_Z, σ_Z , maybe larger for A_b
- \rightarrow How to account for in MC simulations?

Z-pole asymmetries

Blondel scheme: (if e^- and e^+ polarization available) Blondel '88

Four independent measurements for $P_{e^+}/P_{e^-} = ++, +-, -+, --$

$$A_{\mathsf{LR}} = \sqrt{\frac{(\sigma_{++} + \sigma_{-+} - \sigma_{+-} - \sigma_{--})(-\sigma_{++} + \sigma_{-+} - \sigma_{+-} + \sigma_{--})}{(\sigma_{++} + \sigma_{-+} + \sigma_{+-} + \sigma_{--})(-\sigma_{++} + \sigma_{-+} + \sigma_{+-} - \sigma_{--})}}$$

Note: No need to know $|P_{e^{\pm}}|$!

Main systematic uncertainties:

- \blacksquare Difference of |P| for P>0 and P<0
- \blacksquare Difference of $\mathcal L$ for P>0 and P<0

 $\delta A_{\rm LR} \approx 10^{-4} \qquad \Rightarrow \qquad \delta \sin^2 \theta_{\rm eff}^{\ell} \approx 1.3 \times 10^{-5}$

Mönig, Hawkings '99

	Experiment	Theory error	Main source
M_{W}	$80.379\pm0.012~\text{MeV}$	4 MeV	$\alpha^3, \alpha^2 \alpha_s$
${\sf \Gamma}_Z$	$2495.2\pm2.3~{ m MeV}$	0.4 MeV	$\alpha^{3}, \alpha^{2} \alpha_{s}, \alpha \alpha_{s}^{2}$
R_ℓ	20.767 ± 0.025	0.005	$\alpha^3, \alpha^2 \alpha_s$
R_b	0.21629 ± 0.00066	0.0001	$\alpha^3, \alpha^2 \alpha_s$
$\sin^2 heta_{ ext{eff}}^\ell$	0.23153 ± 0.00016	$4.5 imes10^{-5}$	$\alpha^3, \alpha^2 \alpha_s$

Theory error estimate is not well defined, ideally $\Delta_{th} \ll \Delta_{exp}$

- Common methods: Count prefactors (α , N_c , N_f , ...)
 - Extrapolation of perturbative series
 - Renormalization scale dependence
 - Renormalization scheme dependence

Goemetric perturbative series

$$\alpha_{\rm t} = \alpha m_{\rm t}^2$$

$$\mathcal{O}(\alpha^{3}) - \mathcal{O}(\alpha_{t}^{3}) \sim \frac{\mathcal{O}(\alpha^{2}) - \mathcal{O}(\alpha_{t}^{2})}{\mathcal{O}(\alpha)} \mathcal{O}(\alpha^{2}) \sim 0.26 \text{ MeV}$$

$$\mathcal{O}(\alpha^{2}\alpha_{s}) - \mathcal{O}(\alpha_{t}^{2}\alpha_{s}) \sim \frac{\mathcal{O}(\alpha^{2}) - \mathcal{O}(\alpha_{t}^{2})}{\mathcal{O}(\alpha)} \mathcal{O}(\alpha\alpha_{s}) \sim 0.30 \text{ MeV}$$

$$\mathcal{O}(\alpha\alpha_{s}^{2}) - \mathcal{O}(\alpha_{t}\alpha_{s}^{2}) \sim \frac{\mathcal{O}(\alpha\alpha_{s}) - \mathcal{O}(\alpha_{t}\alpha_{s})}{\mathcal{O}(\alpha)} \mathcal{O}(\alpha\alpha_{s}) \sim 0.23 \text{ MeV}$$

$$\mathcal{O}(\alpha\alpha_{s}^{3}) - \mathcal{O}(\alpha_{t}\alpha_{s}^{3}) \sim \frac{\mathcal{O}(\alpha\alpha_{s}) - \mathcal{O}(\alpha_{t}\alpha_{s})}{\mathcal{O}(\alpha)} \mathcal{O}(\alpha\alpha_{s}^{2}) \sim 0.035 \text{ MeV}$$

$$\mathcal{O}(lpha_{ t bos}^2)\sim\mathcal{O}(lpha_{ t bos})^2\sim 0.1~{ t MeV}$$

Parametric prefactors:
$$\mathcal{O}(\alpha_{bos}^2) \sim \Gamma_Z \alpha^2 \sim 0.1 \text{ MeV}$$

 $\mathcal{O}(\alpha \alpha_s^2) - \mathcal{O}(\alpha_t \alpha_s^2) \sim \frac{\alpha n_{lq}}{\pi} \alpha_s^2 \sim 0.29 \text{ MeV}$

Total: $\delta \Gamma_Z \approx 0.5 \text{ MeV}$