Development of a room-temperature-curable plastic scintillator

Eisuke Saito

National Institute of Technology (KOSEN), Nagano College

Past affiliation: Niigata Univ., HEP lab.

Introduction

We, in collaborated with Niigata Univ. and Carlit Holdings Co., Ltd have developed a plastic scintillator manufactured at room temperature focusing on the production cost reduction.

Today, I'll talk about the sample production method and the performance of our plastic scintillator.

Materials and methods (1)

Merits of curing at room temperature

Manufacturing inexpensively
Easier manufacturing method

Forming freely Extend availability of molds

Variety of the additive

For example, functional materials such as gadolinium (Gd) is doped to enhance neutron sensitivity

 \Rightarrow Suited for mass production.

Materials and methods (2)

Die-cut silicon rubber sheets (3mmt) are used for the molding.

Tested sample size: 75x 40mm, 3mmt

Experimental setup

To select β -rays emitted from 90 Sr that penetrated a 2- mm-diameter collimator and the sample scintillator, a trigger was set under the sample scintillator.

Black box

Light yield measurement

Light yields are defined as the mean values (ch/mm).

Light yield measurement (2)

We prepared two scintillator samples for each type.

Sample name		Normalized mean	Mean value respect to	Thickness
		(ch/mm)	BC408 (%)	(mm)
BC408	1	986 ± 26	100 ± 3	3.073
	2	989 ± 26	100 ± 3	3.116
Our scintillator	1	333 ± 9	34 ± 1	2.973
w/o antioxidant	2	321 ± 8	33 ± 1	3.052
Our scintillator	1	421 ± 11	43 ± 1	3.101
doped antioxidant (1 wt%)	2	405 ± 11	41 ± 1	2.990

About 40% in comparison with BC408

Long-term stability at room temp.

Preserved condition:

shaded and stored in a desiccator

at 20 °C and ordinary pressure.

This indicates that

the antioxidant stabilizes our plastic scintillator.

Our plan: Stabilization

- 1) To use two type antioxidants
 - ⇒ Lifespan × 2 (Progressing well)
- 2) To further optimize antioxidants.
 - ⇒ Lifespan × 2
- 3) To optimize manufacturing method:
 - 1 Nitrogen purging (Oxygen removal),
 - 2 Complete hardnening, •••
 - ⇒ Lifespan × 2

Attenuation length (1)

Samples:

- BC408 (Saint-Gobain Co.)
- Our plastic scintillator with antioxidant

Size: 200 mm \times 20 mm \times 3 mm

Attenuation length (2)

The mean-value plots of the light yield, which depends on the irradiation position, is fitted with Eq:

$$f = \left(A + \frac{B}{x^2}\right) \cdot e^{-x/L} \,,$$

(A, B: scale parameter, L: attenuation length, $x: {}^{90}Sr$ source position)

Summary

We developed a plastic scintillator using room-temperature-curable resin.

 \Rightarrow Suited for the mass production.

In our recent study, the performance of the room-temperature-curable scintillator was evaluated.

- 1) The Light yield was approximately 40% respect to BC408.
- 2) The plastic scintillator containing 1 wt% an antioxidant showed 50% maintenance of the initial value about 1.5 years storage.
- 3) The attenuation length showed 85 ± 19 cm as long as BC408.