Machine Learning Basics

Abstract of Deep Learning

- Problem of data analysis:
 - Too many data that include several parameters
 - → Deep learning can be appropriate
- Trend: The technique of deep learning has been improved.
 Ex) The victory of artificial intelligence over professionals.
 Improvement of image recognition
- Desire to incorporate this technology into data analysis

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

Features of Deep Neural Network

► Features : Multiple hidden layers

→ Expressive power of output

 However, too complex network arises other problems Ex) overfitting

- ► Contents:
 - Network Construction
 - How to learn the network
 - Confirming how good the neural network is

Neural Network

Example of network construction

Weight: w

Bias:b

 $a = w_1 x_1 + w_2 x_2$

h(): activation function

Neural Network – Input and hidden

- ▶ Weight: Importance on the signals passing through routes.
- ▶ Bias : How easy to fire
- Activation function :

Step function

$$h(x) = \begin{cases} 0 \ (x \le 0) \\ 1 \ (x > 0) \end{cases}$$

Sigmoid function

$$h(x) = \frac{1}{1 + \exp(-x)}$$

ReLU function

$$h(x) = \begin{cases} x (x > 0) \\ 0 (x \le 0) \end{cases}$$

Neural network - Output

Output layer uses activation function that is distinct from the one used in the hidden layers.

Output is between 0 and 1 →Probability

Learning of Network

 Case: Image analysis on MNIST data and classifying the number MNIST (Modified National Institute of Standards and Technology database)

600000 pieces of training data • 100000 pieces of test data • Label data for the numbers written on the image

Loss function: Difference between the output from the network and the correct labels of the training data

Learning of Network

2021/6/11

Loss Function and Method of Learning

▶ Loss function:

Mean squared error:
$$L = \frac{1}{2} \sum_{k} (y_k - t_k)^2$$

Regression Problem

Cross entropy error:
$$L = -\sum_{k} t_k \log y_k$$

Classification Problem

MNIST classification

Method of decreasing loss function

Gradient method

Backpropagation method

Optimization -Gradient Method

- ► The optimal parameter is the value of the parameter when the loss function takes the minimum value.
- Differentiate a loss function and find parameters with 0 gradients

Replacement of parameter \mathbf{w}

$$\mathbf{w} = \mathbf{w} - \eta \frac{\partial \mathbf{L}}{\partial \mathbf{W}}$$

 \mathbf{m} : the learning rate

The right picture: Example of Loss Function is $f(x_0, x_1) = x_0^2 + x_1^2$

Fig. The process of updating $f(x_0, x_1) = x_0^2 + x_1^2$ by the gradient method: the dashed line shows the contours of the function.

Optimization -back propagation-

Forward propagation

- $\frac{\partial L}{\partial \mathbf{X}} = \frac{\partial L}{\partial \mathbf{Y}} \cdot \mathbf{W}^{\mathrm{T}}$ (2,) (3,) (3, 2)
- $\frac{\partial L}{\partial \mathbf{W}} = \mathbf{X}^{\mathrm{T}} \cdot \frac{\partial L}{\partial \mathbf{Y}}$ (2, 3) (2, 1) (1, 3)

- Computes the gradient of the loss function with respect to the weights of the network for a single input-output
- More efficiently than gradient Method

Deep Learning Procedure

- 1. Splitting the data into training data and test data.
- 2. Selecting randomly from the training data and forward propagation to the network
- 3. Updating the parameters (Learning)
- 4. Inputting test data into trained network and check if network is working properly