
Overview on simulation implementation
for the testbeam 2020

Alina – Tania Neagu
Mihai Potlog

Outline

• Testbeam setup:
setup description, Lumical configuration,
code check: geometry construction and overlaping

• Data collection, .root file structure
• Results

2/17

Testbeam setup

 LumiCal configuration:
 15 sensor layers (S1 - S15)
glued to tungsten absorbers
(W1 – W15) ->config. A
 Additional tungsten layer in
front of the stack (W0) ->
config. AA

 Regular configuration:
• Beam spot after the colimator ~5mm x 5mm
• Two scintilator triggers operating in coincidence mode
• 5 telescope planes – 2 before and 3 after the magnet
• Magnet switched OFF
• LumiCal placed on movable table

 Sensor components:
 kapton fan-out
 LumiCal sensor
 high-voltage kapton
 carbon fiber support

 Sensor position:
 only sectors R1 and R2 are
equiped



3/17

Geometry construction for testbeam configurations

Testbeam setup: visualisation

Lumical detector configuration A (15 sensors)

sectors R1 and R2
64 pads each

Lumical sensor components

4/17

Geometry construction for testbeam configurations
 Derive own concrete class from G4VUserDetectorConstruction abstract base class
 Implement the method Construct()

C

U

R

R

E

N

T

S

I

T

U

A

T

I

O

N

2. define shapes, logical volumes and position of the experimental hall

3. define shapes, logical volumes and position of the coverage of LumiCal – Al foil

1. construct all necessary materials

5/17

5. define shapes, logical volumes
and placed the scintillators

4. define shapes, logical volumes
and position of the telescope

6. define shapes, logical volumes and
placed the tungsten absorbers

C

U

R

R

E

N

T

S

I

T

U

A

T

I

O

N

6/17

7. define shapes and logical volumes of
silicon sensors with all their components
starting with kapton fan-out

8. define shapes, logical volumes
and placed the silicon sensor

 silicon sensors are
constructed using

G4PVReplica method to
identify easily the pads

C

U

R

R

E

N

T

S

I

T

U

A

T

I

O

N

7/17

9. define assembly
of an entire
silicon sensor

 placement
of all 15 silicon
sensors using
MakeImprint

11. visualization of all
constructed shapes

10. define a region for sensors
in order to apply various
conditions on it

 Instantiate sensitive detectors and
set them to corresponding volumes

8/17

Each one of the geometry element constructed had the option for the checking of the volume overlaps activated

 silicon sensors assembly components

 tungsten absorbers

 Outcome of the overlap checking

9/17

 Geometry construction:
 rather simplist with some minor point of high interest;
 geometry constructed having placed the first sensors in the (0,0,0) coordinates; all other geometries are
placed with respect to this one;

 telescope:
 a G4Box shape;
 positioned using Z axis
coordinates taken from an array;

 scintillators:
 a G4Box shape;
 each placed individually using
regular G4PVPlacement class;

 tungsten absorbers:
 a G4Box shape;
 each absorber has a different width;
 construction of solid made inside a loop with the
width for absorbers taken from an array;

 sensors:
 each layer constructed individually from kapton fan-out to carbon fiber support;
 silicon sensor build using G4PVReplica which replicates the pads horizontally and the sectors
vertically;
everything wrapped in an assembly;
 the assembly is positioned several times using a loop and a geometry overlap checking.

10/17

 at each step in a sensitive detector, the ProcessHit() method is invoked which create, fill and stores the Hit objects

 Intialize() - create a hit collection at start of an event

Data are collected using Sensitive Detectors which has the goal of creating hits objects through the following virtual methods:
 Initialize()
 ProcessHits()
 EndOfEvent()

11/17

Data are retrieved using EventAction:EndOfEventAction() class

 get the index number of the hit collection - which is unique and don’t change during a run

 retrieve the pointer to the hits collection with the GetHC() method using the collection index

 loop through the entries of hits collection to access individual hits
 store the output in analysis objects

12/17

Data are collected using Sensitive Detectors which has the goal of creating hits objects through the following virtual metods:
 Initialize()
 ProcessHits()
 EndOfEvent()

// Default settings
analysisManager->SetVerboseLevel(1);
analysisManager->SetFileName("fcal");

// Creating ntuples
if (fEventAction) {

analysisManager->CreateNtuple("LumicalTree", "Calorimeter data");

analysisManager->CreateNtupleIColumn("nHits"); // Id = 0
analysisManager->CreateNtupleIColumn("Plan", fEventAction->fCalPlan); // Id = 1
analysisManager->CreateNtupleIColumn("Sector", fEventAction->fCalZone); // Id = 2
analysisManager->CreateNtupleIColumn("Pad", fEventAction->fCalPad); // Id = 3
analysisManager->CreateNtupleDColumn("Energy", fEventAction->fCalEne); // Id = 4

analysisManager->CreateNtupleDColumn("pos_x", fEventAction->fCalX); // Id = 5
analysisManager->CreateNtupleDColumn("pos_y", fEventAction->fCalY); // Id = 6
analysisManager->CreateNtupleDColumn("pos_z", fEventAction->fCalZ); // Id = 7
analysisManager->CreateNtupleDColumn("px", fEventAction->fCalPx); // Id = 8
analysisManager->CreateNtupleDColumn("py", fEventAction->fCalPy); // Id = 9
analysisManager->CreateNtupleDColumn("pz", fEventAction->fCalPz); // Id = 10 2

stringstream nameformat;
G4String edname;
for(G4int k = 1; k < 16; k++){

G4String columname = "Edep";
nameformat << k;
columname += nameformat.str();
nameformat.str("");
edname = columname;

analysisManager->CreateNtupleDColumn(edname);
}

analysisManager->FinishNtuple();

 Energy deposited in each plane

13/17

RunAction class
Create analysis manager, Creatie ntuples

energy deposited spectrum from different X0 - config. AA

14/17

15/17

THANK YOU!

17/17

layer sensor plate Thickness
[mm]

1 - Plansse 2 3.520

2 52 Plansse 3 3.470

3 51 MGS3 3.542

4 29 Plansse 1 3.505

5 59 Plansse 5 3.490

6 10 MGS1 3.584

7 57 MGS2 3.521

8 Free MGS5 3.645

9 53 MGS6 3.470

10 60 A2 3.55

11 64 A8 3.588

12 42S B24 3.543

13 Old T2 B23 3.543

14 Old C3 B12 3.55

15 61 B17 3.55

16 Old C4 A5 3.538

17 58 Plansse 4 3.474

Brand Density Chemical composition

W Ni Cu

Plansee 18 95% 3.5%
(estimated)

1.5%
(estimated)

MGS 17.7 93% 5.25% 1.75%

JINR 18 95% 3.5%
(estimated)

1.5%
(estimated)

18

Testbeam setup

Part II

19/
17

20/17

Suggestion 1: to apply the same bin for Edep 1 and Edep 2

Suggestion 2: to simulate a configuration without the first 2 W absorber
in order to studied the behavior of sensors 2 and 3

21/17

31 2 4
...

Conf AA

Conf aaaa

22/17

Energy deposited in sensors

un-normalised

23/17

Suggestion 3: to move beam in pad 27 (like in experimental data)
to implement all 4 sectors

to increase statistics at 50000 events

24/17

energy deposited spectrum from different X0 - config. AA

25/17

26/17

Suggestion 4: to plot energy deposited in each pad for each plane

• Still needed further investigation on energy deposition

• Ghost hits at boundary mistaken as real hits;

27/17

Conclusions

3D representation of energy deposited in each plan for each sector/pad *

28/17

* For a configuration where energy deposited was collected in all 4 sectors

