Study of the coupling constant g_{HWW} at ILC250

Nicolas Chadeau

23 june 2021

Theoretical aspect

$$\mathcal{M} \propto \mathsf{g}_{HWW}$$

- Interferences:
 - $e_R p_L$: $\sigma_{RL} \propto g_{HZZ}^2$
 - $e_L p_R : \sigma_{LR} = a_1 g_{HZZ}^2 + a_2 g_{HWW}^2 + a_3 g_{HZZ} g_{HWW}$
- $H \rightarrow WW^*$: $Br \propto g_{HWW}^2$
- There's 2 possibilities :
 - $\Lambda = \frac{\sigma_{RL}Br}{A} = (g_{HZZ}g_{HWW})^2$ and $g_{HWW}^4 + (\frac{a_3\sqrt{\Lambda}}{a_2})g_{HWW}^2 = \frac{\sigma_{LR}Br}{Aa_2} \frac{a_1\Lambda}{a_2}$
 - $g_{HWW}^4 + (\frac{a_3g_{HZZ}}{a_2})g_{HWW}^3 + (\frac{a_1g_{HZZ}^2}{a_2})g_{HWW} = \frac{\sigma_{LR}B_r}{Aa_2}$ or $g_{HWW}^2 = \frac{\sigma_{RL}B_r}{Ag_{HZZ}^2}$

2 cuts definitions:

- ullet x values with more events than 5% of distribution's maximum are kept
- \bullet x values with more events than 10% of distribution's maximum are kept

Pre-selection

Based on a full hadronic process :

- Energy, transverse momentum and invariant mass of the 4 jets : reco_E4jets, reco_Pt4jets and reco_M4jets
- Energy, transverse momentum and invariant mass of the 2 W bosons :
 - reco_WBigMass_Energy, reco_WBigMass_Pt and reco_WBigMass_Mass
 - reco_WSmallMass_Energy, reco_WSmallMass_Pt and reco_WSmallMass_Mass
- Anglular distribution between the 2 jets coming from each W boson and the angular distribution between the 2 W bosons:
 reco_WBigMass_CosJets, reco_WSmallMass_CosJets and reco_Cos
- ullet Number of jets with y_cut = 0.002 in the ee-kt-algorithm : reco_njets
- Jets parameters, $Y_{ij} = \frac{E_i E_j}{s} (1 cos(\theta_{ij}))$: reco_Y12, reco_Y13, reco_Y14, reco_Y23, reco_Y24 and reco_Y34

Nicolas Chadeau 4 / 12 23 june 2021

Final selection

Only involving the signal and the 2 fermions background with the 5% cuts selectors :

Some formulas

- Efficiency : $\epsilon_E = \frac{\text{True signal kept}}{\text{True signal}}$
- ullet Purity : $\epsilon_P = rac{ ext{True signal kept}}{ ext{Signal kept}}$

- Significance : $S = \frac{\text{True signal kept}}{\sqrt{\text{Signal kept}}}$
- Error : $\frac{\Delta(\sigma Br)}{\sigma Br} = S^{-1}$

$e_R p_L$

- Efficiency : $\epsilon_E = 70.12\%$
- Purity : $\epsilon_P = 2.48\%$
- Significance : S = 7.483
- Error : $\frac{\Delta(\sigma_{RL}Br)}{\sigma_{RL}Br}=13.36\%$

$e_L p_R$

- Efficiency : $\epsilon_E = 71.49\%$
- Purity : $\epsilon_P = 2.36\%$
- Significance : S = 5.225
- Error : $\frac{\Delta(\sigma_{LR}Br)}{\sigma_{LR}Br} = 19.14\%$

Conclusion

- Firstly : I have to include the 4 fermions background to compute the error on the coupling constant g_{HWW}
- Secondly: We need the production of the t channel only (W fusion process), to study how it affect the selectors and how we could play with it to improve our selection

Appendix

Here is the 2 fermions backgroung with the signal and the other decays of the Higgs boson with an itegrated luminosity of $250 \, fb^{-1}$

