

Introduction of ILC-TPC

Jurina Nakajima(SOKENDAI) belonging to LC-TPC Asian group

jurina@post.kek.jp

ILC summer camp 2021

Ι

Α

кеND

S O

Contents

1. Principle of TPC

- What is TPC?
- What do we need to know at TPC?
- Momentum resolution
- Position resolution
- Gas

2. Readout module of TPC

- Introduction of various modules
- New technology
- Ion backflow

3.Summary

Time Projection Chamber (TPC)

for every particle produced

What can we know at TPC?

1.Momentum measurement - Today's topic

Measure the curvature radius of the tracks in B=3.5T

 $\frac{\sigma_{p_{\perp}}}{p_{\perp}} \simeq 1 \times 10^{-4} p_{\perp} [\text{GeV/c}]$ (TPC only)

https://www.ilcild.org

<u>3.Particle ID</u>

Measure the dE/dx (loss energy of particles)

←dE/dx is different for each particle.

2.2-track separation

Make a 1:1 correspondence between track and Calorimeter

2hit resolution in $r\phi \simeq 2 \,\mathrm{mm}$

2hit resolution in z $\simeq 6 \,\mathrm{mm}$

Fundamental principle of TPC

Momentum resolution

A charged particle follows a **helix** in uniform B-field

Radius: r

Transverse momentum: p_{\perp}

Velocity : v_{\perp} C

Charge: q

$$F = qv_{\perp}B , F = mv_{\perp}^2/r$$
$$\rightarrow \int p_{\perp} [\text{GeV/c}] = 0.3 \cdot B[\text{T}] \cdot r[\text{m}]$$

Using sagitta to calculate curvature radius of track

Sagitta: S curvature radius of track: r Arm length: l

$$r^{2} = (l/2)^{2} + (r-s)^{2} \quad (s \ll r)$$

 $\rightarrow \quad 2rs = (l/2)^{2} + s^{2} \simeq l^{2}/4$

$$\rightarrow$$
 $r \simeq l^2/(8s)$

$$\kappa := \frac{1}{p_{\perp}} \simeq \left(\frac{8\alpha}{Bl^2}\right) s \longrightarrow \sigma_{\kappa}^{meas} := \frac{\sigma_{p_{\perp}}}{p_{\perp}^2} \simeq \left(\frac{8\alpha}{Bl^2}\right) \sigma_s$$

6

Ex)Q. p = 1GeV, B = 3T? A. r = about 1m

Momentum resolution

Gluckstern Formula

$$\frac{\sigma_{p_{\perp}}}{p_{\perp}} = \sqrt{\frac{(\sigma_{\kappa}^{meas})^2 + (\sigma_{\kappa}^{MS})^2}{\text{Detector}}} \sum_{\substack{\text{Multiple} \\ \text{resolution}}} \frac{(\sigma_{\kappa}^{meas})^2 + (\sigma_{\kappa}^{MS})^2}{\text{Spatial resolution in the r-$$$$$$$$$ plane per point: σ_x} \\ The number of sampling points: N Thickness measured in radiation length units: X/X_0 \\ Leaver arm length: l Magnetic field: B \\ Const.: α, C \\ = \sqrt{\left(\frac{\alpha\sigma_x}{Bl^2}\right)^2 \left(\frac{720}{N+4}\right) p_{\perp}^2 + \left(\frac{\alpha C}{Bl}\right)^2 \frac{10}{7} \left(\frac{X}{X_0}\right)}}$$

R. L. Glueckstern, NIM 24 (1963) 381

Transversmomentum: p_{\perp}

ILD detector requires overall

$$\frac{\sigma_{p_{\perp}}}{p_{\perp}} \simeq 2 \times 10^{-5} p_{\perp} [\text{GeV/c}]$$

TPC is required

$$\frac{\sigma_{p_{\perp}}}{p_{\perp}} \simeq 1 \times 10^{-4} p_{\perp} [\text{GeV/c}]$$

There are about <u>200</u> points of $\sigma_x \simeq 100 [\mu m]$

in B = 3.5 T and drift length = 2.2 m

Position resolution

$$\sigma_x = \sqrt{\sigma_0^2 + \frac{C_d^2 \cdot z}{N_{eff}}}$$

drift length: z Transverse diffusion: C_d The effective number of electrons: Neff

Transverse diffusion constant C_d

$$C_d(B,E) = \frac{1}{\sqrt{1+\omega^2\tau^2}} C_d(0,E) \qquad \begin{array}{l} \mbox{Cyclotron frequency: } \omega \\ \mbox{Mean free time: } \tau \end{array}$$

Electrons are affected by diffusion \rightarrow position resolution is worse

 \rightarrow A large $\omega \tau$ is needed to reduce transverse diffusion

* In TPC, Lorentz force suppresses transverse diffusion of drift electrons by curling them around the magnetic field

Effect of gas gain fluctuation

Effective number of electron N_{eff}

W/o gas gain fluctuation

W/ gas gain fluctuation

Ex) 4 GeV pion, pad pitch 6mm, pure Ar

$$N_{eff} := \left[\left\langle \frac{1}{N} \right\rangle \left\langle \left(\frac{G}{\bar{G}} \right)^2 \right\rangle \right]^{-1} = 21 < \frac{1}{\langle 1/N \rangle} = 36 < \langle N \rangle = 71$$

We need to select "good" gas

What is "good" gas?

Sufficient electrons · Suppress diffusion in high B-field region

Gas mixture (T2K gas)

Ar :
$$CF_4$$
 : Iso- C_4H_{10} = 95 : 3 : 2 [%]

"Quencher"

CF₄ "Quencher"

Ar - CF4 mixture has large τ

$$C_d(B, E) = \frac{1}{\sqrt{1 + \omega^2 \tau^2}} C_d(0, E)$$

→ fast drift velocity as compared typical chamber gas

→ Large $ω\tau$ ex) 7.5 cm/µs (230V/cm)

 $Iso-C_4H_{10}$ "Quencher"

+ "Penning effect"

Ionization potential

 $Iso-C_4H_{10} < Ar$

Ar* + Iso-C₄H₁₀ → Ar + (Iso-C₄H₁₀)+ +
$$e^{-1}$$

meta-stable Ar

Additional e

Readout Module

11

Multi-Wire Proportional Chamber (MWPC)

ILD: B-field 3.5T

Limiting the spatial resolution

←E×B spread seed electrons along sense wire

Ex) $\sigma_x = 300 \ \mu m$

Cannot achieve ILD requirement!

2mm 2-track separation is difficult

Need support structure to tighten wire

Micro-Pattern Gaseous Detector (MPGD)

GEM (Gas Electron Multiplier)

F.Sauli, NIM A 386(1997)531

MICROMEGAS

SEM image of micro-mesh by scienergy company

Why MPGD?

The distance between holes is small

→ E×B effect is small

→ We can get more precise position information

Supporting structure is simplified (compared to multi-wire chamber)

→ Dead regions are reduced

MICROMEGAS

Micro-mesh Gaseous Detector Structure

E-field in MICROMEGAS

<u>Y.Giomataris(Saclay)</u> proposed in 1996

Only one amplification gap provides sufficient amplification factor

Matrix Resistive anode is needed to avoid hodoscope effect Ex) $\sigma_{PRF} = 12 \mu n$

Mesh

-400/

Ex) $\sigma_{PRF} = 12 \ \mu m$ (Typically)

Charge amplification in MICROMEGAS

was Ar + (10%) CH, at atmospheric pressure.

F.Sauli, NIM A 386(1997)531

Gas Electron Multiplier

F.Sauli(CERN) proposed in 1997

Often used in **multiple** GEM

 $\sigma_{PRF} \sim 300 \ \mu m$ → suitable for ordinary pad readout

E-field in GEM

Candidates of readout module - Analog(Pad) readout

<u>GEM</u>

Asian module

DESY module

Triple GEM

MICROMEGAS

Saclay-Carleton module

Double GEM

Gate GEM

Pad plane

(Resistive anode)

Candidates of readout module - Digital(Pixel) readout

GridPix(TimePix + Protection Layer + Micromegas)

- Free from gas gain fluctuation effect on spatial resolution
- Expect 20-30% improvement of position resolution

Theoretically the best but not yet ready for full implementation of a module

17

Prototype test

Positive ion backflow

In ionization process, not only electron but also positive ions are produced

- → Positive ions flow back in the drift region
- → Making the distortion of E-field
- → Position resolution is worse

How many are positive ions(disk) in TPC?

Positive ions make *ion disk*(1cm) in 1train

Drift velocity(Iso-C₄H₁₀ ion) : 0.37 cm/s Drift E-field : 230 V/cm Distance between trains : 200 ms

Positive ions flow 74 cm forward

Drift length(Max) : 2.2 m

 $\rightarrow 2.2 \,\mathrm{m}/0.74 \,\mathrm{m} \simeq 3$

Not ignore Maximum distortion is 60 μm

K. Fujii, "Positive Ion Effects (LCTPC collaboration meeting presentation)."

D. Arai, "Ion Problem Report (LCTPC Workpackage Meeting # 145)."]8

Gating Foil

Gating foil can keep small distortion in GEM

Summary

What to know in the tracker

"Two 4-vectors" $p^{\mu} = (E/c, p)$, $x^{\mu} = (ct, x) + Charge$

Mathebreview TPC : Time Projection Chamber

Reconstructing tracks of charged particles in 3-dimension

Strong points

- ▶ dE/dx → Particle ID
- 🔈 200 hits
- Long-lived particle measurements

TPC R&D

- Proof of principle : done \rightarrow No show stopper
- Engineering stage : now
 New technology ex) Pixel readout

LCTPC Asian group

GEM gain stability

Mon-uniformity of the gas gain in Asian module

arXiv: 1701.05421

In our simulation study,

the gas gain strongly depends on the thickness of GEM

Preparing measurement system of GEM thickness

GEM thickness measurement

Measurement system

GEM insulation material

Avoid discharge in GEM ----- New insulation material

Glass GEM

LTCC

<u>T.Fujiwara et al 2014 JINST 9 P 11007</u>

 \mathbf{M} Polyimid \rightarrow glass

Y.Kato 2020 J.Phys. Conf. Ser. 1498 012010

M Low Temperature Co-Fired Ceramics

Back up

Why is TPC? (Supplementary documents)

Why we need high momentum resolution?

ILC target : Higgs precise measurement

Higgs mass measurement by Recoil mass method

1.Know 4-vector momentum in the initial state in the case e+e- collider

- 2.Measure momentum of μ pair
- 3. Prove Higgs mass without measure Higgs directly

Recoil mass resolution depends on momentum resolution

Essential to high momentum resolution!

Energy deposit (dE/dx)

Charged particles lost energy when particles pass materials $\longrightarrow dE/dx$

dE/dx for momentum is particle specific

Particle identification

ILD detector requires overall $dE/dx \sim 5\%$

Readout module of TPC (Supplementary documents)

Electronic transparency on gating foil

Gating foil is required of Preventing positive ions

→ Electronic transparency(= Optical openness) is important

Goal of gate module

Electronic transparency > 80%Rate of blocking ions $\sim O(10^{-4})$

← gating foil is 82%

Extrapolation to 3.5T based on 1.0T data

Beam test result with gating foil

GM Resolutin (Module3 Row16)

Position resolution achieved 100µm when we extrapolate to B-field 3.5T and drift length 2.2m

Gating foil (Asian GEM module)

With gating foil

Without gating foil

Field Shaper

Arrange E-field

Field Cage

Cylindrical Gas Vessels + Electric field shaper

To ensure the drift field quality, the inner layer of the field cage's wall will be a foil carrying **field strips** with 2.8 mm pitch.

Field cage of large prototype

End Plate

Closes the TPC gas volume and supports the modules

"It is important that he endplate is designed to have low mass, while retaining the required mechanical and thermal stability" - ILC TDR VOI4

End plate in large prototype

End plate in TDR

Spatial resolution of TPC

Fundamental processes in coordinate measurements

Ionization Statistics

For simplicity, let's first consider the case in which the x-coordinate(arrival point) of each seed electron can be measured exactly

• Pad pitch \rightarrow 0 • No fluctuation of gas gain

Gas gain fluctuation

Now include gas gain fluctuation.

 $P(\bar{x};\tilde{x}) = \sum_{N=1}^{\infty} P_I(N;\bar{N}) \prod_{i=1}^{N} \left[\int_{-\infty}^{+\infty} d\Delta x_i P_D(\Delta x_i;\sigma_d) \right]$ • Pad pitch $\rightarrow 0$ • Gas gain fluctuation G_i $\times \int d\left(\frac{G_i}{\bar{G}}\right) P_G\left(\frac{G_i}{\bar{G}};\theta\right) \left[\delta\left(\bar{x} - \frac{\sum_{i=1}^N G_i x_i}{\sum_{i=1}^N G_i}\right)\right]$ Gas gain fluctuation Gain-weighted mean We can still assume $\tilde{x} = 0$ X Track $\langle \bar{x} \rangle := \int d\bar{x} P(\bar{x}) \bar{x} = 0$ Variance $\sigma_{\bar{x}}^2 := \int d\bar{x} P(\bar{x}) \bar{x}^2 \approx \sigma_d^2 \left\langle \frac{1}{N} \right\rangle \left\langle \left(\frac{G}{\bar{G}}\right)^2 \right\rangle =: \sigma_d^2 \frac{1}{N_{\text{off}}}$ Track point We used $\sum G_i \approx N \bar{G}$ (If N is large enough) $x_i = \tilde{x}$ $\left| N_{eff} := \left| \left\langle \frac{1}{N} \right\rangle \left\langle \left(\frac{G}{\overline{G}} \right)^2 \right\rangle \right|^{-1} < \langle N \rangle \right|$ gas gain fluctuation therefore further reduces the effective number of electrons

Finite Pad Pitch

Let's finally consider the effect of finite pad pitch!

• Finite pad pitch • Gas gain fluctuation G_i

We can no longer assume $\tilde{x} = 0$ because of breaking of translational invariance

Variance of charge centroid

We define
$$\sigma_x^2 := \int_{-1/2}^{1/2} d\left(\frac{\tilde{x}}{w}\right) \int d\bar{x} P(\bar{x}; \bar{x})(\bar{x} - \bar{x})^2$$
 Average over track position \bar{x} in the pad pitch w
Integrate over $\Delta Q_a, \Delta x_i, \frac{G_i}{G}$ and average over N $\Rightarrow \sigma_x^2 = [A] + \frac{1}{N_{eff}} [B] + [C]$
 $\sigma_x^2 = \frac{1}{N_{eff}} (\frac{\tilde{x}}{w}) (\sum_{\alpha} (aw) (F_\alpha(\tilde{x} + \Delta x)) \Delta x - \tilde{x})^2$
 $\sigma_x^2 = \frac{1}{N_{eff}} [A]_{x=0} + \sigma_d^2] [B] + \frac{1}{N_{eff}} (\frac{w^2}{12} + \sigma_d^2)]_{\sigma_{FHP} \ll w}$
Electric noise
 $[C] = (\frac{\sigma_E}{G})^2 \langle \frac{1}{N^2} \rangle_N \sum_a (aw)^2$
 q_1

Spatial resolution

- · We can analytically estimate the spatial resolution.
- We can improve the spatial resolution based on theoretical basis!

 N_{eff} in typical model

4 GeV pion, pad pitch 6mm, pure Ar

Incident angle effect on the spatial resolution

R.Yonamine,K.Fujii [https://doi.org/10.1088/1748-0221/9/03/C03002]

Analytic expressions for N_{eff} and \hat{N}_{eff}

$$\sigma_x^2(Z; w, L \tan \phi, C_d, N_{eff}, \hat{N}_{eff}, [f]) = [A] + \frac{1}{N_{eff}} [B] + [C] + \frac{1}{N_{eff}} [D]$$
The effective number of electrons
$$N_{eff} = \left[\left\langle \sum_{i=1}^{N} \sum_{j=1}^{k_i} \left\langle \left(\frac{G_{ij}}{\sum_{i=1}^{N} \sum_{j=1}^{k_i} G_{ij}} \right)^2 \right\rangle_G^{k_i, \sum_{i=1}^{N} k_i} \right\rangle_{N,k} \right]^{-1} \simeq \left[\left\langle \frac{1}{\sum_{i,k}} \right\rangle_{N,k} \left\langle \left(\frac{G}{G} \right)^2 \right\rangle_G^{-1} \right]^{-1}$$
The effective number of clusters
$$\hat{N}_{eff} \approx \left[\left\langle \sum_{i=1}^{N} \left\langle \left(\frac{\sum_{j=1}^{k_i} G_{ij}}{\sum_{i=1}^{N} \sum_{j=1}^{k_i} G_{ij}} \right)^2 \right\rangle_G^{k_i, \sum_{i=1}^{N} k_i} \right\rangle_{N,k} \right]^{-1} \sim \left[\left\langle \frac{1}{N} \right\rangle_N \left\langle \left(\frac{\hat{G}}{\hat{G}} \right)^2 \right\rangle_{k,G} \right]^{-1}$$
Notice
$$\bar{G} \approx \frac{\sum_i \sum_j G_{ij}}{\sum_i k_i} \longrightarrow \hat{N}_{eff} \simeq \left[\left\langle \frac{\sum_{i=1}^{N} k_i^2}{\left(\sum_{i=1}^{N} k_i^2 \right)^2} \right\rangle + \frac{1}{N_{eff}} - \frac{1}{N_{eff}} \right]^{-1} \left(N_{eff}^{wbcl} \simeq \left[\left\langle \frac{1}{\sum_i k_i} \right\rangle_{N,k} \right]^{-1} \right)$$

$$w/ gas gain w/o gas gain fluctuation$$

R.Yonamine, K.Fujii [https://doi.org/10.1088/1748-0221/9/03/C03002]

Beam test of TPC (Large prototype @DESY)

Beam test

The original purpose of the beam test was to compare performance of the Asian modules with and without the gating foil.

<u>Set up</u>

- ▶ Electron Beam = 5 GeV
- ▶ B = 1 T
- ▶ T2K gas (Ar:CF4:iso-C4H10 = 95:3:2)
- Analysis frame work : Marlin TPC
- 20000evt / 1 run
- Data set used : φ= -20°, 0°, 10°, 20°
 - For this analysis we use data taken without the gating foil

