[arXiv:2108.11868]

Precise calculation of charged Higgs boson decays in two Higgs doublet models

Kodai Sakurai (Tohoku U.)

Collaborators:

Shinya Kanemura (Osaka U.), Masashi Aiko (Osaka U.)

ILC camp, online

Introduction

THDMs: two Higgs doublet models

- So far, the standard model (SM) is successful theory that describes electroweak symmetry breaking.
- However, the structure of the Higgs sector has not been clarified.
 - Extended Higgs sectors.

 $\Phi + \Phi$ (Doublet), $\Phi + S$ (Doublet), $\Phi + \Delta$ (Triplet), etc.

- They appear in variety of New Physics (NP) models and scenarios. SUSY, WIMP dark matter, generation of neutrino mass, electroweak baryogenesis, ...
- → We can pursue NP by investigating Higgs sector.

This talk: Radiative corrections to charged Higgs boson (H^{\pm}) decays in THDMs.

- Importance and quantitative size of the radiative corrections to H^{\pm} decays.
- How can we separate 4 types of THDMs by decay patterns of H^{\pm} ?

Kodai Sakurai

Two Higgs doublet models (THDMs)

$$V = m_1^2 |\Phi_1|^2 + m_2^2 |\Phi_2|^2 - m_3^2 (\Phi_1^{\dagger} \Phi_2 + \text{h.c.}) + \frac{1}{2} \lambda_1 |\Phi_1|^4 + \frac{1}{2} \lambda_2 |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_1^{\dagger} \Phi_2|^2 + \frac{1}{2} \lambda_5 [(\Phi_1^{\dagger} \Phi_2)^2 + \text{h.c.}], \qquad \Phi_i = \begin{pmatrix} w_i^{\pm} \\ \frac{1}{\sqrt{2}} (v_1 + h_i + z_i) \end{pmatrix}$$

$$(i = 1, 2)$$

- Z₂ symmetry is imposed : $\Phi_1 \rightarrow +\Phi_1$, $\Phi_2 \rightarrow -\Phi_2$
 - Z₂ charge for (u_R, d_R, ℓ_R) : Type-I Type-II Type-X Type-Y (-, -, -), (-, +, +), (-, -, +), (-, +, -)
 - → 4 types of Yukawa interactions.

 *L*_Y = Y_u Q
 *Q*_L Φ
 *u*_R Y_d Q
 *L*_L Φ
 *e*_R + h.c.

 → Flavor changing neutral current (FCNC) is prohibited at tree level.
- Mass eigenstates:

$$\begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = R(\alpha) \begin{pmatrix} H \\ h \end{pmatrix} \cdot \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = R(\beta) \begin{pmatrix} G^0 \\ A \end{pmatrix} \cdot \begin{pmatrix} w_1^{\pm} \\ w_2^{\pm} \end{pmatrix} = R(\beta) \begin{pmatrix} G^{\pm} \\ H^{\pm} \end{pmatrix}$$

$$R(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

H, *A*, *H*⁺, *H*⁻ :additional Higgs bosons, h : SM-like Higgs boson

• Input parameters: m_H , m_A , $m_H \pm \sigma$, $m_H \pm \sigma$, $m_B + \sigma$, $M^2 = m_3^2/(\sin\beta\cos\beta)$

Alignment limit

Alignment limit:
$$\sin(\beta - \alpha) = 1$$

Higgs boson couplings:

$$\kappa_X \equiv g_{hXX}/g_{hXX}^{\rm SM}$$

$$\kappa_V = \sin(\beta - \alpha)$$

$$\kappa_V = \sin(\beta - \alpha) + \xi_f \cos(\beta - \alpha)$$
Alignment limit
$$\kappa_V = 1$$

$$\kappa_f = 1$$

Constraint from Higgs signal strength

Alignment limit or near alignment scenarios ($sin(\beta - \alpha) \simeq 1$) are favored.

Synergy between direct and indirect searches[1/3]

Alignment limit: $sin(\beta - \alpha) = 1$

[M. Aiko, S. Kanemura, M. Kikuchi, K. Mawatari, KS, K. Yagyu, NPB 966 (2021) 115375]

Direct searches : Lower bounds for m_{Φ} and $\tan \beta$ are given.

Indirect searches : No sensitivity since Higgs couplings do not deviate.

Synergy between direct and indirect searches[2/3]

Direct searches : $A \to Zh$ and $H \to hh$ give wider sensitivity regions for $(m_{\Phi}, \tan \beta)$ plane.

Indirect searches : If a deviation in hZZ founds, the upper bounds for m_{Φ} are given.

→ Most parameter space can be surveyed.

Kodai Sakurai Precise calculation of charged Higgs boson decays in two Higgs doublet models

Synergy between direct and indirect searches[3/3]

[M. Aiko, S. Kanemura, M. Kikuchi, K. Mawatari, KS, K. Yagyu, NPB 966 (2021) 115375]

→ Sensitivity regions by direct searches are drastically changed by $\sin(\beta - \alpha)$.

Radiative corrections to Heavy Higgs decays can be significant in alignment scenarios.

- H^{\pm} decays (this talk)
- H decays (talk by Mariko Kikuchi on 21st Sep. (Tue.))
- A decays (future work)

Radiative corrections to Higgs boson decays

- Radiative corrections to SM-like Higgs boson h
 - Higgs boson couplings (one-loop EW)
 - hff, hVV , hhh[S. Kanemura, Y. Okada, E. Senaha, C. Yuan, PRD70 (2004) 115002][S. Kanemura, M. Kikuchi, K. Yagyu, PLB 731 (2014) 27][S. Kanemura, M. Kikuchi, K. Yagyu, NPB896 (2015) 80]
 - Higgs boson decays (NLO EW, NNLO QCD)

 $h \to f\bar{f}, \ h \to VV^* \to Vf\bar{f}$

[S. Kanemura, M. Kikuchi, K. Mawatari, KS, K. Yagyu, PLB783 (2018) 140][S. Kanemura, M. Kikuchi, K. Mawatari, KS, K. Yagyu, NPB949 (2019) 114791]

H-COUP calculates these processes.	Other tools:	
[Kanemura, Kikuchi, KS, Yagyu, CPC 233 (2018) 134]	2HDECAY	Prophecy4f
[Kanemura, Kikuchi, KS, Mawatari, Yagyu, CPC257(2020) 107512]	[M. Krause, M. Mühlleitner, M. Spira, CPC. 246 (2020) 106852]	[L. Altenkamp, S. Dittmaier, H. Rzehak JHEP 1803 (2018) 110]

- Production process at ILC (NLO EW, NLO QCD)

 $e^+e^- \rightarrow Zh$ talk by Masashi Aiko on 21st Sep (Tue.).

 $e^+e^-
ightarrow \gamma h$ [S. Kanemura, K. Mawatari, KS, PRD 99 (2019) 035023]

→ Loop effects in Higgs observables have been studied.

Kodai Sakurai Precise calculation of charged Higgs boson decays in two Higgs doublet models

Calculation of one-loop corrections to charged Higgs decays

• We calculated NLO EW and NLO QCD corrections to the following process:

$$H^{\pm} \to ff', \quad H^{\pm} \to W\phi \ (\phi = h, H, A), \quad H^{\pm} \to WV(V = Z, \gamma)$$

For UV divergence : improved on-shell scheme (same scheme as H-COUP) For IR divergence : adding real photon emission contributions

- Analytical expressions will be implemented in **H-COUP ver**. 3.
- Behavior of branching ratios for H^+ for near alignment scenario, $\sin(\beta \alpha) = 0.995$

Low $\tan\beta$ regions : $H^+ \rightarrow t\bar{b}$ is dominant without depending on types of THDMs.

High $\tan\beta$ regions : difference among types of THDMs can appear.

Kodai Sakurai Precise calculation of charged Higgs boson decays in two Higgs doublet models

Effects of scalar loop corrections to charged Higgs decays

Kodai Sakurai

Precise calculation of charged Higgs boson decays in two Higgs doublet models

10

Discrimination of THDMs by decays of H[±]

• $BR(H^+ \to \tau^+ \nu) \gtrsim 10\%$ is predicted only in Type-X.

• In Type-I $BR(H^+ \rightarrow W^+ h)$ can be maximally 60%.

(Type-II and Y can be identified by $BR(H^+ \to c\bar{b})$ and $BR(H^+ \to \tau^+ \nu)$.) -> Back up slide

Summary

- Constraints from direct searches of additional Higgs bosons are drastically changed depending on $\sin(\beta \alpha)$.
 - → Radiative corrections to heavy Higgs boson decays can be significant in alignment scenarios, $\sin(\beta \alpha) \simeq 1$.
- We investigated impact of radiative corrections to charged Higgs boson decays.
 - Magnitude of NLO corrections to $\Gamma(H^+ \to t\bar{b})$ and $\Gamma(H^+ \to W^+ h)$ can become 10-30%
- We found that 4 types of THDMs can be distinguished by H^+ decays. Type-I : maximum of BR $(H^+ \rightarrow w^+h)$ is ~60%. Type-X : BR $(H^+ \rightarrow \tau^+\nu) \gtrsim 10\%$.

Type-II and-Y: characteristic predictions in correlation between $BR(H^+ \rightarrow \tau^+ \nu)$ and $BR(H^+ \rightarrow c\bar{b})$.

12

Buck up

Branching ratios in near alignment senarios

Kodai Sakurai

Precise calculation of charged Higgs boson decays in two Higgs doublet models

