Possibility of multi-step electroweak phase transition in the two Higgs doublet models

Hiroto Shibuya

(Kanazawa Univ.)

Mayumi Aoki, Takatoshi Komatsu, H. S. [arXiv:2106.03439]

Summer camp on ILC accelerator, physics and detctors 2021

Introduction

Baryogenesis (BG)

We still do not know how baryons were produced...

$$\frac{n_B}{s} = (8.59 \pm 0.08) \times 10^{-11}$$
 [Plank Collaboration ('18)]

 n_B : number density of baryons

: entropy density

Electroweak phase transition (EWPT)

To achieve BG in EW scale, EWPT is need to be 1st order.

[Kuzmin et al. ('85)]

- Standard model (SM) EWPT does not become 1st order. [Kajantie et al. ('95); Csikor et al. ('99)]
- Two Higgs Doublet Model (2HDM)

Difficult to achieve BG because of strict constraints from EDM expt. [Haarr, et al. ('16); Cheng, et al. ('17)]

Multi-step EWPT has possibility to achieve EWBG!

Inert 2HDM [Blinov et al. ('15)]

Two Higgs Doublet Model

2HDM is a model added one more SU(2) doublet to SM.

$$V_{0}(\Phi_{1}, \Phi_{2}) = -m_{1}^{2} \Phi_{1}^{\dagger} \Phi_{1} - m_{2}^{2} \Phi_{2}^{\dagger} \Phi_{2} - m_{3}^{2} (\Phi_{1}^{\dagger} \Phi_{2} + \Phi_{2}^{\dagger} \Phi_{1}) + \frac{\lambda_{1}}{2} (\Phi_{1}^{\dagger} \Phi_{1}) + \frac{\lambda_{2}}{2} (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \frac{\lambda_{5}}{2} \left[(\Phi_{1}^{\dagger} \Phi_{2})^{2} + (\Phi_{2}^{\dagger} \Phi_{1})^{2} \right]$$

$$\Phi_{i} = \begin{pmatrix} w_{i}^{+} \\ \frac{v_{i} + h_{i} + iz_{i}}{\sqrt{2}} \end{pmatrix} (i = 1, 2), \quad \sqrt{v_{1}^{2} + v_{2}^{2}} = 246 \text{ GeV}$$

Types of Yukawa interactions

To avoid FCNC processes, assume two doublets has different Yukawa couplings.

Type	u type	d type	lepton
Type-I	Φ_2	Φ_2	Φ_2
Type-II	Φ_2	Φ_1	Φ_1
Type-X	Φ_2	Φ_2	Φ_1
Type-Y	Φ_2	Φ_1	Φ_2

The Effective Potential

The one-loop corrected effective potential

$$V^{\beta} = V_0 + V_1^0 + V_{\text{CT}} + \overline{V}_1^{\beta} \text{ Thermal effect}$$

$$\begin{cases} V_1^0 & \text{the one-loop contributions at zero temperature} \\ V_{\text{CT}} & \text{the counter term for maintaining } \text{the position of the minimum} \\ \text{the masses of scalar bosons} \end{cases}$$

$$\bar{V}_1^{\beta} & \text{the one-loop contributions at finite temperature}$$

Resummation [Parwani ('92)]

We perform the numerical method for taking into account contributions from "Daisy diagram." [Dolan, Jackiw ('74)]

Constraints

Theoretical constraints

Bounded from below Perturbative theory $|\lambda_i| < 4\pi$ Tree-level unitarity

Stability of EW vacuum (confirmed in $|\phi_i| < 10$ TeV)

Experimental constraints

Electroweak precision data

$$ightarrow m_{H^\pm} = m_A ext{ or } m_H ext{ [Haber, O'Neil ('11)]}$$

Flavor experiments

From
$$B_d \to \mu\mu$$
, $\tan \beta \gtrsim 2$ (Type-I)

[Haller et al. ('18)]

Higgs couplings strength [ATLAS Collab. ('19)]

$$\rightarrow |\cos(\beta - \alpha)| \lesssim 0.25 \text{ (for } \tan \beta \gtrsim 2, \text{ Type-I)}$$

Pass of a multi-step EWPT

First step PT

From the origin to ϕ_2 axis, (strong) 1st order PT occurs.

Second step PT

From ϕ_2 axis to EW vacuum, 1st or 2nd order PT occurs.

"Strong" means that the PT satisfies the condition for suppressing the sphaleron processes $v(T_c)/T_c \ge 1$. [Shaposhnikov ('86,'87,'88), Erratum(92)] 6

Numerical Results

M. Aoki, T. Komatsu, H. S. [arXiv:2106.03439]

Case of Type-I
$$(\mathbf{m_A} = \mathbf{m_{H^\pm}})$$
 (we use CosmoTransitions) $m_A \ [\mathrm{GeV}] \quad m_H \ [\mathrm{GeV}] \quad \tan\beta \quad \cos(\beta-\alpha) \quad m_3^2 \ [\mathrm{GeV}^2] \ \hline 130-1000 \quad 130-1000 \quad 2-10 \quad -0.25-0.25 \quad 0-10^4$

1-step PT vs. multi-step PT

Multi-step PTs have tendency to occur with $m_A - m_H < 0$ and large $|m_A - m_H|$.

Numerical Results

M. Aoki, T. Komatsu, H. S. [arXiv:2106.03439]

Case of Type-I $(\mathbf{m_A} = \mathbf{m_{H^\pm}})$ (we use CosmoTransitions) $m_A \ [\mathrm{GeV}] \quad m_H \ [\mathrm{GeV}] \quad \tan\beta \quad \cos(\beta-\alpha) \quad m_3^2 \ [\mathrm{GeV}^2] \quad [\text{Wainwright ('12)}] \quad 130-1000 \quad 130-1000 \quad 2-10 \quad -0.25-0.25 \quad 0-10^4$

2-step PT vs. "strong 2-step" PT 2-step PT where 1st step is strongly 1st order

Strong 2-step PTs only occur with $m_A - m_H > 0$ Opposite to the result of multi-step!

Numerical Results

M. Aoki, T. Komatsu, H. S. [arXiv:2106.03439]

Strong 2-step PTs only occur with $m_A - m_H > 0$ Opposite to the result of multi-step!

Higgs trilinear couplings

The deviation of the Higgs trilinear coupling from that in SM

$$\lambda_{hhh} = \frac{\partial^3 V_{\text{eff}}}{\partial h^3} \bigg|_{\langle \phi \rangle}, \quad \delta \lambda_{hhh} \equiv \frac{\lambda_{hhh} - \lambda_{hhh}_{\text{SM}}}{\lambda_{hhh}_{\text{SM}}} \quad \begin{array}{c} \text{SM-like Higgs}, h \\ h - - \bullet \bullet \bullet \\ h \end{array}$$

The deviations have a tendency to increase when the multi-step PTs occur. Especially, the deviations with the strong 2-step PTs are about 50%–250%.

10

Case of fixing parameters

When we fix as $\tan \beta = 2, \cos(\beta - \alpha) = -0.2$, and $m_3^2 = 0 \text{ GeV}^2$,

When $\delta\lambda_{hhh} \simeq 1.5$, the multi-step PTs occur at $m_A \simeq 400-440~{
m GeV}$ and the strong 2-step PTs at $m_A \simeq 440~{
m GeV}$.

The trilinear coupling is an important observable for multi-step!

Summary

- In the CP-conserving 2HDMs, we find wide areas where the multi-step PTs occur and their features.
 - $m_A m_H < 0$ (multi-step), $m_A m_H > 0$ (strong 2-step)
- The deviation of the Higgs trilinear coupling from that in SM has a tendency to increase when the multi-step PT occurs. Especially, the deviation is more than about 50% in the cases of the "strong 2-step" PTs, which can be detected by the ILC operating at 500GeV!
- With a combination of other signatures (like gravitational wave spectrum), it might be possible to identify whether the multi-step PT occurs or not.

Back Up

Multi-peaked Gravitational Wave

Sources of GW from a PT

There are three sources producing the GWs

$$\Omega_{\mathrm{GW}} \simeq \Omega_{\mathrm{coli}} + \Omega_{\mathrm{sw}} + \Omega_{\mathrm{turb}}$$
 [Bian, Liu ('18)] dominant

The GWs from a 2-step PT

$$m_A = m_{H^{\pm}} = 490 \text{ GeV}$$
 $m_H = 300 \text{ GeV}$
 $\tan \beta = 2.3$
 $\cos(\beta - \alpha) = -0.21$
 $m_3^2 = 400 \text{ GeV}^2$
 $\delta \lambda_{hhh} \simeq 2.2$
 $\xi_1 = 2.1, \ \xi_2 = 4.2$

Features of regions for multi-step PTs

Features for multi-step (& strong 2-step)

small $\tan\beta$ negative & small $\cos(\beta-\alpha)$ related with m_2^2

To move to ϕ_2 axis at the 1st step PT, m_2^2 is need to be small enough.

$$V_0(\phi_1, \phi_2) \supset m_2^2 \phi_2^2 - m_3^2 \phi_1 \phi_2$$

If m_3^2 is too large, the PT would only occur just one time (which is 1-step PT).

Theoretical Constraints

Allowed area by constraints from BFB, perturbative theory and tree-level unitarity in Type-I with $m_A=m_{H^\pm}$

Even if in Type-I with $m_H=m_{H^\pm}, \ \text{large} \ m_H$ is constrained at large $\tan \beta.$

Type-I $(\mathbf{m_H} = \mathbf{m_{H^\pm}})$

Type-X $(\mathbf{m_A}=\mathbf{m_{H^\pm}})$

Type-X $(\mathbf{m_H}=\mathbf{m_{H^\pm}})$

Number Analyses for multi-step PTs

Number analyses for strong 2-step PTs

Passes of multi-step PTs

In the first step, PT occurs along the axis.
In the last step, PT occurs in direction of the EW vacuum.

F

Higgs trilinear coupling & $\cos(\beta - \alpha)$

As $\cos(\beta - \alpha)$ is getting smaller, the maximum deviations is larger.

Negative deviations yield when

$$|\cos(\beta - \alpha)| \gtrsim 0.1$$
$$(m_3^2 \gtrsim 2500 \text{ GeV}^2)$$