Probing a minimal $U(1)_X$ model at future e^-e^+ collider via the fermion pair production channels

Based on : 2104.10902 In collaboration with P. S. Bhupal Dev Yutaka Hosotani Sanjoy Mandal

The 72nd General Meeting of ILC Physics Subgroup

Standard model and missing link/s

The Standard Model of Particle Interactions

Three Generations of Matter

Strongly established Few of the very interesting anomalies :

Tiny neutrino mass and flavor mixings Relic abundance of dark matter...

Unkown-

SM can not explain them

Over the decades experiments have found each and every missing pieces

> Verified the facts that they belong to this family

Finally at the Large Hadron collider Higgs has been observed

Its properties must be verified

with interesting shortcomings

Different physics frontiers

Energy frontier : Scientists build partcile acclerators to explore high energy scale to explore new phenomena after the subatomic collisions.

Intensity frontier : Highly intense beams from accelerators are used to to investigate the ultra rare processes of nature.

Cosmic frontier : Astrophysicists use the cosmos as the laboratory to investigate the fundamental laws of physics from a complementary point of view of particle accelerator.

Ground based telescopes

Interferometers LIGO/ DECIGO

CMB/WMAP

Space Telescopes (FermiLAT)

Dark Matter Inflation

Dark Energy N

-ICE

Pb PS

FASER

R

E

0

R

F

E

R

Proposal of a scenario

	$SU(3)_{c}$ SU(2) _L U(1) _V		$U(1)_X$		Relevant part of the Yukawa sector					
						$\mathcal{L}^{\text{Yukawa}} = -Y_u^{\alpha\beta} \overline{q_L^{\alpha}} H u_R^{\beta} - Y_d^{\alpha\beta} \overline{q_L^{\alpha}} \tilde{H} d_R^{\beta} - Y_e^{\alpha\beta} \overline{\ell_L^{\alpha}} \tilde{H} e_R^{\beta} - Y_\nu^{\alpha\beta} \overline{\ell_L^{\alpha}} H N_R^{\beta} - Y_N^{\alpha} \Phi \overline{N_R^{\alpha c}} \tilde{H} d_R^{\beta} - Y_e^{\alpha\beta} \overline{\ell_L^{\alpha}} \tilde{H} e_R^{\beta} - Y_\nu^{\alpha\beta} \overline{\ell_L^{\alpha}} H N_R^{\beta} - Y_N^{\alpha} \Phi \overline{N_R^{\alpha c}} \tilde{H} d_R^{\beta} - Y_e^{\alpha\beta} \overline{\ell_L^{\alpha}} \tilde{H} e_R^{\beta} - Y_\nu^{\alpha\beta} \overline{\ell_L^{\alpha}} H N_R^{\beta} - Y_N^{\alpha\beta} \overline{\ell_L^{\alpha}} \tilde{H} d_R^{\beta} - Y_e^{\alpha\beta} \overline{\ell_L^{\alpha}} \tilde{H} e_R^{\beta} - Y_\nu^{\alpha\beta} \overline{\ell_L^{\alpha}} H N_R^{\beta} - Y_N^{\alpha\beta} \overline{\ell_L^{\alpha}} \tilde{H} e_R^{\beta} - Y_\nu^{\alpha\beta} \overline{\ell_L^{\alpha}} H N_R^{\beta} - Y_N^{\alpha\beta} \overline{\ell_L^{\alpha}} \tilde{H} e_R^{\beta} - Y_\nu^{\alpha\beta} \overline{\ell_L^{\alpha}} H N_R^{\beta} - Y_N^{\alpha\beta} \overline{\ell_L^{\alpha}} \tilde{H} e_R^{\beta} - Y_\nu^{\alpha\beta} \overline{\ell_L^{\alpha}} \tilde{H} e_R^{\beta} - Y_\nu^{\alpha\beta} \overline{\ell_L^{\alpha}} H N_R^{\beta} - Y_N^{\alpha\beta} \overline{\ell_L^{\alpha}} \tilde{H} e_R^{\beta} - Y_\nu^{\alpha\beta} \overline{\ell_L^{\alpha}} H N_R^{\beta} - Y_N^{\alpha\beta} \overline{\ell_L^{\alpha}} H N_R^{$				
$ q_L^i $	3	2	$\frac{1}{6}$	$x'_q =$	$\frac{1}{6}x_H + \frac{1}{3}x_\Phi$					
$\left u_{R}^{i} \right $	3	1	$\frac{2}{3}$	$x'_u =$	$\frac{2}{3}x_H + \frac{1}{3}x_\Phi$	Anomaly cancellation conditions				
d_R^i	3	1	$-\frac{1}{3}$	$x'_d = \cdot$	$-\frac{1}{3}x_H + \frac{1}{3}x_\Phi$	$U(1)_X \otimes [SU(3)_c]^2$: $2x'_q - x'_u - x'_d$				
ρi	1	9	1	~/	$-\frac{1}{2}mr$	$\mathrm{U}(1)_X \otimes [\mathrm{SU}(2)_L]^2$: $3x'_q + x'_\ell$				
$\downarrow^{\mathcal{L}}L$			$\overline{2}$	\mathcal{I}_{ℓ} —	$-\overline{2}xH - x\Phi$	$U(1)_X \otimes [U(1)_Y]^2$: $x'_q - 8x'_u - 2x'_d + 3x'_\ell - 6x'_e$				
e_R^i	1	1	-1	$x'_e =$	$-x_H - x_\Phi$	$[\mathrm{U}(1)_X]^2 \otimes \mathrm{U}(1)_Y : \qquad \qquad x'_q^2 - 2x'_u^2 + x'_d^2 - x'_\ell^2 + x'_e^2$				
N_R^i	1	1	0	$x'_{\nu} =$	$-x_{\Phi}$	$[\mathrm{U}(1)_X]^3 : \qquad 6x'_q{}^3 - 3x'_u{}^3 - 3x'_d{}^3 + 2x'_^3 - x'_^3 - x'_e{}^3$				
			1	<i>(</i>) 	<i>m</i>	$U(1)_X \otimes [\text{grav.}]^2$: $6x'_q - 3x'_u - 3x'_d + 2x'_\ell - x'_\nu - x'_e$				
H		2	$-\frac{1}{2}$	$-\frac{x_{H}}{2} =$	$-\frac{x_H}{2}$					
Φ	1	1	0	$2x_{\Phi} =$	$2x_{\Phi}$	- After anomaly cancellation				

Before anomaly cancellation

Linear combination of $U(1)_{Y}$ and $U(1)_{B-L}$

Higgs potential

$$V = m_h^2 (H^{\dagger} H) + \lambda (H^{\dagger} H)^2 + m_{\Phi}^2 (\Phi^{\dagger} H)^2 + m_{\Phi$$

Electroweak breaking $U(1)_X$ breaking

$$\langle \Phi \rangle = \frac{v_{\Phi} + \phi}{\sqrt{2}} \qquad \langle H \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} v+h \\ 0 \end{pmatrix}$$

Mass of the neutral gauge boson Z' $M_{\mathbf{7}}$

Neutrino masss $\mathscr{L}^{\text{mass}} = -Y_{\nu}^{\alpha\beta}\overline{\ell_L^{\alpha}}HN_B^{\beta} - Y_N^{\alpha}\Phi\overline{N_B^{\alpha c}}N_B^{\alpha} + \text{h.c.} \quad U(1)_X \text{ breaking}$

$$m_{N_{\alpha}} = \frac{Y_{N}^{\alpha}}{\sqrt{2}} v_{\Phi}, \ m_{D}^{\alpha\beta} = \frac{Y_{\nu}^{\alpha\beta}}{\sqrt{2}} v. \ m_{\nu}^{\text{mass}} = \begin{pmatrix} 0 & m_{D} \\ m_{D}^{T} & m_{N} \end{pmatrix} \qquad m_{\nu} \simeq -m_{D} m_{N}^{-1} m_{D}^{T}$$
Seesaw mechnism

$\Phi^{\dagger}\Phi) + \lambda_{\Phi}(\Phi^{\dagger}\Phi)^{2} + \lambda'(H^{\dagger}H)(\Phi^{\dagger}\Phi)$

$$v \simeq 246 \,\text{GeV}, v_{\Phi} > > v_h$$

$$g_{Z'} = g' \sqrt{4v_{\Phi}^2 + \frac{1}{4}x_H^2 v_h^2} \simeq 2g' v_{\Phi}.$$

can explain the origin of the light neutrino mass and can be tested at the experiments

Z' interactions

Interaction between the quarks and Z

Interaction between the leptons and

 $q_{x_L}^f \neq q_{x_R}^f$ affects the phenomenology

Partial decay width Charged fermions $\Gamma(Z' \rightarrow 2f) =$

light neutrinos $\Gamma(Z' \to 2\nu)$

heavy neutrinos $\Gamma(Z' \rightarrow 2N) =$

$$\mathbf{Z}' \qquad \mathcal{L}^q = -g'(\overline{q}\gamma_\mu q_{x_L}^q P_L q + \overline{q}\gamma_\mu q_{x_R}^q P_R q) Z'_\mu$$

$$\mathbf{Z}' \quad \mathcal{L}^{\ell} = -g'(\bar{\ell}\gamma_{\mu}q_{x_{L}}^{\ell}P_{L}\ell + \bar{e}\gamma_{\mu}q_{x_{R}}^{\ell}P_{R}e)Z'_{\mu}$$

$$= N_c \frac{M_{Z'}}{24\pi} \left(g_L^f \left[g', x_H, x_\Phi \right]^2 + g_R^f \left[g', x_H, x_\Phi \right]^2 \right)$$

$$=\frac{M_{Z'}}{24\pi} g_L^{\nu} \left[g', x_H, x_\Phi\right]^2$$

$$\frac{M_{Z'}}{24\pi} g_R^N \left[g', x_\Phi \right]^2 \left(1 - 4 \frac{m_N^2}{M_{Z'}^2} \right)^{\frac{3}{2}}$$

Implica

ati	ons	of th	ne c	hoice	es of x_{l}	y kee	epi	ng x	<i>σ</i> =	: 1					
	No interaction with e_R												No interaction with d_R		
	$\operatorname{SU}(3)_c$	${ m SU}(2)_L$	$\mathrm{U}(1)_Y$	U	$\mathcal{V}(1)_X$	-2	-1	-0.5	0	$\left 0.5 \right $	1	2			
						$\mathrm{U}(1)_{\mathrm{R}}$			B-L						
$\left q_{L}^{i} ight $	3	2	$\frac{1}{6}$	$x'_q =$	$\frac{1}{6}x_H + \frac{1}{3}x_\Phi$	0	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{5}{12}$	$\frac{1}{2}$	$\frac{1}{3}$			
$\left u_{R}^{i} \right $	3	1	$\frac{2}{3}$	$x'_u =$	$\frac{2}{3}x_H + \frac{1}{3}x_\Phi$	-1	$-\frac{1}{3}$	0	$\frac{1}{3}$	$\frac{1}{2}$	1	5 3			
$\left d_{R}^{i} ight $	3	1	$-\frac{1}{3}$	$x'_d = -$	$-\frac{1}{3}x_H + \frac{1}{3}x_\Phi$	1	$\frac{2}{3}$	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{6}$	0	$-\frac{1}{3}$			
$\left \ell_L^i ight $	1	2	$-\frac{1}{2}$	$x'_{\ell} =$	$-\frac{1}{2}x_H - x_\Phi$	0	$-\frac{1}{2}$	$-\frac{3}{4}$	-1	$\frac{5}{4}$	$-\frac{3}{2}$	$\left -2\right $			
e_R^i	1	1	-1	$x'_e =$	$-x_H - x_\Phi$	1	0	$-\frac{1}{2}$	-1	$\left -\frac{3}{2}\right $	-2	-3			
N_R^i	1	1	0	$x'_{\nu} =$	$-x_{\Phi}$	-1	-1	-1	-1	-1	-1	-1			
H	1	2	$-\frac{1}{2}$	$\left -\frac{x_H}{2}\right =$	$-\frac{x_H}{2}$	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\left \begin{array}{c} \frac{1}{4} \end{array} \right $	$\frac{1}{4}$	$\left \begin{array}{c} 1 \end{array} \right $			
Φ	1	1	0	$2x_{\Phi} =$	$2x_{\Phi}$	2	2	2	2	2	2	2			

No interaction with left handed fermions V No interaction with u_R

Partial decay widths of Z'

$$Z' \rightarrow 2\nu$$

$$g_L^{\nu}[g_x, x_H] = \left((-\frac{1}{2})x_H + (-1)\right)g_L$$

$$\Gamma[Z' \rightarrow 2\nu] = \frac{M_{Z'}}{24\pi}g_L^{\nu}[g_x, x_H]^2$$

$$Z' \to 2u \qquad g_L^u[g_x, x_H] = \left((\frac{1}{6})x_H + (\frac{1}{3})\right)g_x$$
$$g_R^u[g_x, x_H] = \left((\frac{2}{3})x_H + (\frac{1}{3})\right)g_x$$
$$\Gamma[Z' \to 2u] = \frac{M_{Z'}}{24\pi}(g_L^u[g_x, x_H]^2 + g_R^u[g_x, x_H]^2)$$

 $x_{\Phi} =$

 $\Gamma[Z' \to 2\ell] = \frac{M_{Z'}}{24\pi} (g_L^e[g_x, x_H]^2 + g_R^e[g_x, x_H]^2)$

 $Z' \to 2d \qquad g_L^d[g_x, x_H] = \left((\frac{1}{6}) x_H + (\frac{1}{3}) \right) g_x \\ g_R^d[g_x, x_H] = \left((-\frac{1}{3}) x_H + (\frac{1}{3}) \right) g_x$ $\Gamma[Z' \to 2d] = \frac{M_{Z'}}{24\pi} (g_L^d [g_x, x_H]^2 + g_R^d [g_x, x_H]^2)$

Properties of the model and phenomenology New particles Z' boson Heavy Majorana Neutrino $U(1)_X$ Higgs boson Phenomenology Z' boson production and decay Z' boson mediated processes Heavy neutrino production Jurina Nakajima's talk Dark Matter

Fermionic pair production form the Z'

- $U(1)_X$ Higgs phenoemenology : Vacuum Stability collider
 - Leptogenesis and many more

Fermionic pair production form the Z' New particles Z' boson Heavy Majorana Neutrino $U(1)_X$ Higgs boson Phenomenology Z' boson production and decay Heavy neutrino production Dark Matter collider $U(1)_X$ Higgs phenoemenology : Vacuum Stability Leptogenesis and many more

Limits on $M_{Z'}$ and g' can also be obtained from dilepton and dijet searches at the LHC

$$g' = \sqrt{g_{\text{Model}}^2 \left(\frac{\sigma_{\text{ATLAS}}^{\text{Obs.}}}{\sigma_{\text{Model}}}\right)}$$

Limits on the model parameters Using LEP – II (1302 3/15) and (prospective) II C (1008 11200) $\cdot \frac{M_{Z'}}{g'}$ using LEP – II (1302.3415) and (prospective) ILC (1908.11299) : $\frac{\pm 4\pi}{(1+\delta_{ef})(\Lambda_{AB}^{f\pm})^2} (\overline{e}\gamma_{\mu}P_A e)(\overline{f}\gamma_{\mu}P_B f)$ Z' exchange matrix element for our process $\frac{(g')^2}{M_{Z'}^2 - s} \left[\overline{e}\gamma_\mu (x_\ell' P_L + x_e' P_R)e\right] \left[\overline{f}\gamma_\mu (x_{f_L} P_L + x_{f_R} P_R)f\right]$ Matching the above equations we obtain $M_{Z'}^2 - s \ge \frac{{g'}^2}{{\Lambda}\pi} |x_{e_A} x_{f_B}| ({\Lambda}_{AB}^{f\pm})^2$ Indicates a large VEV scale can be probed from LEP – II to ILC1000 via ILC250 and ILC500 Shows limits on M_{Z'} vs g' for LEP – II, ILC250, ILC500 and ILC1000

Interaction between fermions and Z'

We compare dilepton production cross section with

 $-L_{int} \supset f_L \gamma^{\mu} g' Q_x Z'_{\mu} f_L + f_R \gamma^{\mu} g' Q'_x Z'_{\mu} f_R.$

U(1)' charge of left handed fermions

U(1)' charge of right handed fermions

the dilepton production at the ATLAS

Recent bounds on the heavy Z' from dilepton channel

For heavier Z', the limits from e^-e^+ colliders are stronger than the current LHC results

x_H=2

 M_{Z} [TeV] For heavier Z', the limits from e⁻e⁺ colliders are stronger than the current LHC results

Deviations in total cross sections from SM is more than 100% for $x_H \ge 1$ for $\sqrt{s} = 3$ TeV. For $\sqrt{s} < 3$ TeV the deviation is also sizable.

 $e^-e^+ \rightarrow ff$

We define

0.500

لم X مر م م 0.050

0.010

0.005

______ ក្រុ ស្ទ្ធ 0.100

0.010

X__ 0.100

0.010

slo

No interaction with u_R

No contribution q_{RR} , q_{LR} in $t\bar{t}$

 $x_H = 1$

No interaction with d_R

No contribution q_{RR} , q_{LR} in $b\overline{b}$

$A_{\rm LD}(\cos\theta) =$	$\frac{d\sigma_{\rm LR}}{d\cos\theta}(\cos\theta) -$	$\frac{d\sigma_{\rm RL}}{d\cos\theta}(\cos\theta)$
$\mathcal{A}_{LR}(\cos v) =$	$\frac{d\sigma_{\rm LR}}{d\cos\theta}(\cos\theta) +$	$\frac{d\sigma_{\rm RL}}{d\cos\theta}(\cos\theta)$

Differential Left – Right, Forward – Backward Asymmetry ($e^-e^+ \rightarrow \mu^-\mu^+$) : $\mathscr{A}_{LR, FB}$

Statistical error

$$\Delta \mathcal{A}_{LR,FB} = 2 \frac{(n_3 + n_2) \left(\sqrt{n_1} + \sqrt{n_4}\right) + (n_1 + n_4) \left(\sqrt{n_3} + \sqrt{n_2}\right)}{(n_1 + n_4)^2 - (n_3 + n_2)^2} A_{LR,FB}$$

Differential

 $M_{Z'} = 7.5 \text{ TeV}$

$$\mathcal{A}_{LR,FB}(\cos\theta) = \frac{\left[\sigma_{\mathrm{LR}}(\cos\theta) - \sigma_{\mathrm{RL}}(\cos\theta)\right] - \left[\sigma_{\mathrm{LR}}(-\cos\theta) - \sigma_{\mathrm{RL}}(-\cos\theta)\right]}{\left[\sigma_{\mathrm{LR}}(\cos\theta) + \sigma_{\mathrm{RL}}(\cos\theta)\right] + \left[\sigma_{\mathrm{LR}}(-\cos\theta) + \sigma_{\mathrm{RL}}(-\cos\theta)\right]}$$

Deviation from the SM

Bhabha scattering

Bhabha scattering

$$q_{s}(s)^{\text{LL}} = \frac{e^{2}}{s} + \frac{g_{L}^{2}}{s - M_{Z}^{2} + iM_{Z}\Gamma_{Z}} + \frac{g_{L}^{\prime 2}}{s - M_{Z}^{2} + iM_{Z}\Gamma_{Z}^{\prime }} \\ q_{s}(s)^{\text{RR}} = \frac{e^{2}}{s} + \frac{g_{R}^{2}}{s - M_{Z}^{2} + iM_{Z}\Gamma_{Z}} + \frac{g_{R}^{\prime 2}}{s - M_{Z}^{2} + iM_{Z}\Gamma_{Z}^{\prime }} \\ q_{s}(s)^{\text{LR}} = q_{s}(s)^{\text{RL}} = \frac{e^{2}}{s} + \frac{g_{L}g_{R}}{s - M_{Z}^{2} + iM_{Z}\Gamma_{Z}} + \frac{g_{L}^{\prime 2}}{s - M_{Z}^{2} + iM_{Z}\Gamma_{Z}^{\prime }} \\ q_{t}(s, \theta)^{\text{LR}} = q_{t}(s, \theta)^{\text{RL}} = \frac{e^{2}}{t} + \frac{g_{L}^{2}}{t - M_{Z}^{2} + iM_{Z}\Gamma_{Z}} + \frac{g_{L}^{\prime 2}}{t - M_{Z}^{2} + iM_{Z}^{\prime }\Gamma_{Z}^{\prime }} \\ q_{t}(s, \theta)^{\text{RR}} = \frac{e^{2}}{t} + \frac{g_{L}^{2}}{t - M_{Z}^{2} + iM_{Z}\Gamma_{Z}} + \frac{g_{L}^{\prime 2}}{t - M_{Z}^{2} + iM_{Z}^{\prime }\Gamma_{Z}^{\prime }} \\ q_{t}(s, \theta)^{\text{RR}} = \frac{e^{2}}{t} + \frac{g_{L}^{2}}{t - M_{Z}^{2} + iM_{Z}\Gamma_{Z}} + \frac{g_{L}^{\prime 2}}{t - M_{Z}^{2} + iM_{Z}^{\prime }\Gamma_{Z}^{\prime }} \\ q_{t}(s, \theta)^{\text{RR}} = \frac{e^{2}}{t} + \frac{g_{L}^{2}}{t - M_{Z}^{2} + iM_{Z}\Gamma_{Z}} + \frac{g_{L}^{\prime 2}}{t - M_{Z}^{2} + iM_{Z}^{\prime }\Gamma_{Z}^{\prime }} \\ s|q^{\text{RL}}| = s|q_{s}(s)^{\text{RL}} + q_{t}(s, \theta)^{\text{RL}}| \\ s|q^{\text{RL}}| = s|q_{s}(s)^{\text{RL}} + q_{t}(s, \theta)^{\text{RL}}| \\ s|q^{\text{RL}}| = s|q_{s}(s)^{\text{RL}} + q_{t}(s, \theta)^{\text{RL}}| \\ s|q^{\text{RR}}| = s|q_{s}(s)^{\text{RR}} + q_{t}(s, \theta)^{\text{RR}}| \\ s|q^{\text{RR}}| \\ s|q^{\text$$

s – channel

t – channel

combined

Deviation in differential scattering cross section

 $M'_{Z} = 7.5 \text{ TeV}$

Differential LR asymmetry

Integrated LR asymmetry

Conclusions :

of beyond the SM sceannios.

This allows us to probe heavier Z'.

The motovation of this work is to find a new particle and/or a new force carrier as a part of the of the new physics searches including a variety of BSM aspects.

We are looking for a scenario where which can explain a variety

- The proposal for the generation of the tiny neutrino mass, from the seesaw mechanism, under investigation at the energy frontier.
- We study \mathscr{A}_{FB} , \mathscr{A}_{LR} , \mathscr{A}_{LR} , \mathscr{A}_{LR} . The asymmetries are sizable at the 250 GeV and 500 GeV e^-e^+ colliders or higher in the near future.
- Such a model can be studied at muon colliders with high CM energy.

Back-up Slides

