Probing a minimal $\mathrm{U}(1)_{\mathrm{X}}$ model at future $\mathrm{e}^{-} \mathrm{e}^{+}$ collider via the fermion pair production channels

The 72nd General Meeting of ILC Physics Subgroup

Standard model and missing link/s

Strongly established with interesting shortcomings Few of the very interesting anomalies :

Over the decades experiments have found each and every missing pieces

Verified the facts that they belong to this family
Finally at the Large Hadron collider Higgs has been observed \longrightarrow Its properties must be verified

Different physics frontiers

Energy frontier : Scientists build partcile acclerators to explore high energy scale to explore new phenomena after the subatomic collisions.

Intensity frontier : Highly intense beams from accelerators are used to to investigate the ultra rare processes of nature.

Cosmic frontier : Astrophysicists use the cosmos as the laboratory to investigate the fundamental laws of physics from a complementary point of view of particle accelerator.

Proposal of a scenario

Before anomaly cancellation

Relevant part of the Yukawa sector
$\mathcal{L}^{\text {Yukawa }}=-Y_{u}^{\alpha \beta} \overline{q_{L}^{\alpha}} H u_{R}^{\beta}-Y_{d}^{\alpha \beta} \overline{q_{L}^{\alpha}} \tilde{H} d_{R}^{\beta}-Y_{e}^{\alpha \beta} \overline{\ell_{L}^{\alpha}} \tilde{H} e_{R}^{\beta}-Y_{\nu}^{\alpha \beta} \overline{\ell_{L}^{\alpha}} H N_{R}^{\beta}-Y_{N}^{\alpha} \Phi \overline{N_{R}^{\alpha c}} N_{R}^{\alpha}+$ h.c
Anomaly cancellation conditions

$$
\begin{aligned}
& \mathrm{U}(1)_{X} \otimes\left[\mathrm{SU}(3)_{c}\right]^{2}: \\
& 2 x_{q}^{\prime}-x_{u}^{\prime}-x_{d}^{\prime}=0, \\
& \mathrm{U}(1)_{X} \otimes\left[\mathrm{SU}(2)_{L}\right]^{2}: \\
& 3 x_{q}^{\prime}+x_{\ell}^{\prime}=0, \\
& \mathrm{U}(1)_{X} \otimes\left[\mathrm{U}(1)_{Y}\right]^{2}: \\
& x_{q}^{\prime}-8 x_{u}^{\prime}-2 x_{d}^{\prime}+3 x_{\ell}^{\prime}-6 x_{e}^{\prime}=0, \\
& {\left[\mathrm{U}(1)_{X}\right]^{2} \otimes \mathrm{U}(1)_{Y} \quad:} \\
& {x_{q}^{\prime}}^{2}-2{x_{u}^{\prime}}^{2}+{x_{d}^{\prime}}^{2}-{x_{\ell}^{\prime}}^{2}+{x_{e}^{\prime}}^{2}=0, \\
& {\left[\mathrm{U}(1)_{X}\right]^{3} \quad:} \\
& \mathrm{U}(1)_{X} \otimes \text { [grav. }^{2}: \\
& 6 x_{q}^{\prime}-3 x_{u}^{\prime}-3 x_{d}^{\prime}+2 x_{\ell}^{\prime}-x_{\nu}^{\prime}-x_{e}^{\prime}=0 .
\end{aligned}
$$

$2 x_{\Phi}$ After anomaly cancellation
Linear combination of $\mathrm{U}(1)_{\mathrm{Y}}$ and $\mathrm{U}(1)_{\mathrm{B}-\mathrm{L}}$

Higgs potential

$$
V=m_{h}^{2}\left(H^{\dagger} H\right)+\lambda\left(H^{\dagger} H\right)^{2}+m_{\Phi}^{2}\left(\Phi^{\dagger} \Phi\right)+\lambda_{\Phi}\left(\Phi^{\dagger} \Phi\right)^{2}+\lambda^{\prime}\left(H^{\dagger} H\right)\left(\Phi^{\dagger} \Phi\right)
$$

$\mathrm{U}(1)_{\mathrm{X}}$ breaking Electroweak breaking

$$
\langle\Phi\rangle=\frac{v_{\Phi}+\phi}{\sqrt{2}} \quad\langle H\rangle=\frac{1}{\sqrt{2}}\binom{v+h}{0} \quad v \simeq 246 \mathrm{GeV}, v_{\Phi} \gg v_{h}
$$

Mass of the neutral gauge boson $\mathbb{Z}^{\prime} \quad M_{Z^{\prime}}=g^{\prime} \sqrt{4 v_{\Phi}^{2}+\frac{1}{4} x_{H}^{2} v_{h}^{2}} \simeq 2 g^{\prime} v_{\Phi}$.
Neutrino masss $\mathscr{L}^{\text {mass }}=-Y_{\nu}^{\alpha \beta} \overline{\ell_{L}^{\alpha}} H N_{R}^{\beta}-Y_{N}^{\alpha} \Phi \overline{N_{R}^{\alpha c}} N_{R}^{\alpha}+$ h.c. $U(1)_{X}$ breaking

$$
m_{N_{\alpha}}=\frac{Y_{N}^{\alpha}}{\sqrt{2}} v_{\Phi}, m_{D}^{\alpha \beta}=\frac{Y_{\nu}^{\alpha \beta}}{\sqrt{2}} v . \quad m_{\nu}^{\text {mass }}=\left(\begin{array}{cc}
0 & m_{D} \\
m_{D}^{T} & m_{N}
\end{array}\right) \quad \begin{gathered}
m_{\nu} \simeq-m_{D} m_{N}^{-1} m_{D}^{T} \\
\text { Seesaw mechnism }
\end{gathered}
$$

Z^{\prime} interactions

Interaction between the quarks and $\mathbb{Z}^{\prime} \quad \mathcal{L}^{q}=-g^{\prime}\left(\bar{q} \gamma_{\mu} q_{x_{L}}^{q} P_{L} q+\bar{q} \gamma_{\mu} q_{x_{R}}^{q} P_{R} q\right) Z_{\mu}^{\prime}$
Interaction between the leptons and $\mathbb{Z}^{\prime} \quad \mathcal{L}^{\ell}=-g^{\prime}\left(\overline{(} \gamma_{\mu} q_{x_{L}}^{\ell} P_{L} \ell+\bar{e} \gamma_{\mu} q_{x_{R}}^{\ell} P_{R} e\right) Z_{\mu}^{\prime}$

$$
q_{x_{L}}^{f} \neq q_{x_{R}}^{f} \text { affects the phenomenology }
$$

Partial decay width

Charged fermions $\quad \Gamma\left(Z^{\prime} \rightarrow 2 f\right)=N_{c} \frac{M_{Z^{\prime}}}{24 \pi}\left(g_{I}^{f}\left[g^{\prime}, x_{H}, x_{\Phi}\right]^{2}+g_{R}^{f}\left[g^{\prime}, x_{H}, x_{\Phi}\right]^{2}\right)$
light neutrinos

$$
\Gamma\left(Z^{\prime} \rightarrow 2 \nu\right)=\frac{M_{Z^{\prime}}}{24 \pi} g_{L}^{\nu}\left[g^{\prime}, x_{H}, x_{\Phi}\right]^{2}
$$

heavy neutrinos

$$
\Gamma\left(Z^{\prime} \rightarrow 2 N\right)=\frac{M_{Z^{\prime}}}{24 \pi} g_{R}^{N}\left[g^{\prime}, x_{\Phi}\right]^{2}\left(1-4 \frac{m_{N}^{2}}{M_{Z^{\prime}}^{2}}\right)^{\frac{3}{2}}
$$

Implications of the choices of x_{H} keeping $x_{\Phi}=1$

No interaction with e_{R}												
	$\mathrm{SU}(3)$	U(2)	$\mathrm{U}(1)_{Y}$	$\mathrm{U}(1)_{X}$	-2 $U(1)_{R}$	-1	-0.5	$\begin{gathered} 0 \\ B-L \end{gathered}$	0.5	1	2	
$\|c\|_{q_{L}^{i}} u^{i}$	3 3 3	2 1 1	$\frac{1}{6}$ $\frac{2}{3}$ $-\frac{1}{3}$	$\begin{aligned} x_{q}^{\prime} & =\frac{1}{6} x_{H}+\frac{1}{3} x_{\Phi} \\ x_{u}^{\prime} & =\frac{2}{3} x_{H}+\frac{1}{3} x_{\Phi} \\ x_{d}^{\prime} & =-\frac{1}{3} x_{H}+\frac{1}{3} x_{\Phi}\end{aligned}$	$\begin{gathered} 0 \\ -1 \\ 1 \end{gathered}$	$\begin{array}{\|c} \frac{1}{6} \\ -\frac{1}{3} \\ \frac{2}{3} \end{array}$	$\begin{aligned} & \frac{1}{4} \\ & 0 \\ & \frac{1}{2} \end{aligned}$	$\begin{aligned} & \frac{1}{3} \\ & \frac{1}{3} \\ & \frac{1}{3} \end{aligned}$	$\begin{array}{\|c} \frac{5}{12} \\ \frac{1}{2} \\ \frac{1}{6} \\ \hline \end{array}$	$\frac{1}{2}$ 1 0	$\frac{1}{3}$ $\frac{5}{3}$ $-\frac{1}{3}$	
$\\| \begin{aligned} & \ell_{L}^{i} \\ & e_{R}^{i} \end{aligned}$	1		$-\frac{1}{2}$ -1	$x_{\ell}^{\prime}=-\frac{1}{2} x_{H}-x_{\Phi}$ $x_{e}^{\prime}=-x_{H}-x_{\Phi}$		$\begin{array}{\|c} -\frac{1}{2} \\ 0 \end{array}$	$\begin{aligned} & -\frac{3}{4} \\ & -\frac{1}{2} \end{aligned}$	$\begin{aligned} & -1 \\ & -1 \end{aligned}$	㐌a $-\frac{3}{2}$	$-\frac{3}{2}$ -2	$\left\lvert\, \begin{aligned} & -2 \\ & -3 \end{aligned}\right.$	
N_{R}^{i}	1	1	0	$x_{\nu}^{\prime}=\quad-x_{\Phi}$	-1	-1	-1	-1	-1	-1	-1	
H Φ	1		$\begin{gathered} -\frac{1}{2} \\ 0 \end{gathered}$	$\begin{aligned} -\frac{x_{H}}{2} & =-\frac{x_{H}}{2} & \\ 2 x_{\Phi} & = & 2 x_{\Phi} \end{aligned}$	2	$\begin{aligned} & \frac{1}{2} \\ & 2 \end{aligned}$	$\begin{aligned} & \frac{1}{2} \\ & 2 \end{aligned}$	0 2	$\begin{aligned} & \frac{1}{4} \\ & 2 \end{aligned}$	$\frac{1}{4}$ 2	1 2	

$$
\Gamma\left[Z^{\prime} \rightarrow 2 \nu\right]=\frac{M_{Z^{\prime}}}{24 \pi} g_{L}^{\nu}\left[g_{x}, x_{H}\right]^{2}
$$

$$
\Gamma\left[Z^{\prime} \rightarrow 2 u\right]=\frac{M_{Z^{\prime}}}{24 \pi}\left(g_{L}^{u}\left[g_{x}, x_{H}\right]^{2}+g_{R}^{u}\left[g_{x}, x_{H}\right]^{2}\right)
$$

$$
\Gamma\left[Z^{\prime} \rightarrow 2 \ell\right]=\frac{M_{Z^{\prime}}}{24 \pi}\left(g_{L}^{e}\left[g_{x}, x_{H}\right]^{2}+g_{R}^{e}\left[g_{x}, x_{H}\right]^{2}\right)
$$

$$
\Gamma\left[Z^{\prime} \rightarrow 2 d\right]=\frac{M_{Z^{\prime}}}{24 \pi}\left(g_{L}^{d}\left[g_{x}, x_{H}\right]^{2}+g_{R}^{d}\left[g_{x}, x_{H}\right]^{2}\right)
$$

Properties of the model and phenomenology

New particles $\quad Z^{\prime}$ boson

Heavy Majorana Neutrino
$U(1)_{X}$ Higgs boson
Phenomenology Z^{\prime} boson production and decay
Z^{\prime} boson mediated processes
Jurina Nakajima's talk \quad Heavy neutrino production
$U(1)_{X}$ Higgs phenoemenology : Vacuum Stability
Dark Matter collider
Leptogenesis and many more
Fermionic pair production form the Z^{\prime}

Fermionic pair production form the Z^{\prime}

New particles Z^{\prime} boson Heavy Majorana Neutrino $U(1)_{X}$ Higgs boson Phenomenology Z^{\prime} boson production and decay Heavy neutrino production Dark Matter collider $U(1)_{X}$ Higgs phenoemenology : Vacuum Stability Leptogenesis and many more

Bhabha scattering

Limits on the model parameters
Considering the limit $\mathrm{M}_{\mathrm{Z}^{\prime}} \gg \sqrt{\mathrm{s}}$ and appling effective theory we find the limits on $\frac{\mathrm{M}_{\mathrm{Z}^{\prime}}}{\mathrm{g}^{\prime}}$ using LEP - II (1302.3415) and (prospective) ILC (1908.11299) :

Matching the above equations we obtain

$$
M_{Z^{\prime}}^{2}-s \geq \frac{g^{\prime 2}}{4 \pi}\left|x_{e_{A}} x_{f_{B}}\right|\left(\Lambda_{A B}^{f \pm}\right)^{2}
$$

Indicates a large VEV scale can be probed from LEP - II to ILC1000 via ILC250 and ILC500 Shows limits on $\mathrm{M}_{\mathrm{Z}^{\prime}}$ vs g^{\prime} for LEP - II, ILC250, ILC500 and ILC1000

Limits on $\mathrm{M}_{\mathrm{Z}^{\prime}}$ and g^{\prime} can also be obtained from dilepton and dijet searches at the LHC

$$
g^{\prime}=\sqrt{g_{\text {Model }}^{2}\left(\frac{\sigma_{\mathrm{ATLAS}}^{\mathrm{Obs}}}{\sigma_{\mathrm{Model}}}\right)}
$$

Interaction between fermions and Z^{\prime}

$$
-L_{i n t} \supset f_{L} \gamma^{\mu} g^{\prime} Q_{x} Z_{\mu}^{\prime} f_{L}+f_{R} \gamma^{\mu} g^{\prime} Q_{x}^{\prime} Z_{\mu}^{\prime} f_{R} .
$$

We compare dilepton production cross section with the dilepton production at the ATLAS

$$
g^{\prime}=\sqrt{\frac{\sigma_{\text {ATLAS }}^{\text {Observed }}}{\left(\frac{\sigma_{\text {Model }}}{g_{\text {Model }}^{2}}\right)}}
$$

Recent bounds on the heavy Z^{\prime} from dilepton channel

For heavier Z^{\prime}, the limits from $\mathrm{e}^{-} \mathrm{e}^{+}$colliders are stronger than the current LHC results

$$
e^{-} e^{+} \rightarrow \mu^{+} \mu^{-} \quad M_{Z^{\prime}}=7.5 \mathrm{TeV}
$$

Deviations in total cross sections from SM is more than 100% for $x_{H} \geq 1$ for $\sqrt{s}=3 \mathrm{TeV}$. For $\sqrt{\mathrm{s}}<3 \mathrm{TeV}$ the deviation is also sizable.

We define

$$
\begin{aligned}
& q^{e_{L} f_{L}}=\sum_{i} \frac{g_{L}^{V_{i} e} g_{L}^{V_{i} f}}{s-m_{V_{i}}^{2}+i m_{V_{i}} \Gamma_{V_{i}}},
\end{aligned} q^{e_{L} f_{R}}=\sum_{i} \frac{g_{L}^{V_{i} e} g_{R}^{V_{i} f}}{s-m_{V_{i}}^{2}+i m_{V_{i}} \Gamma_{V_{i}}} \quad 1 \quad g_{L / R}^{V_{i}} \quad \rightarrow \text { information of charges }
$$

SM

$x_{H}=-2$
No interaction with left handed fermions
No contribution $q_{L L}, q_{L R}, q_{R L}$ in $\mu^{+} \mu^{-}$
$x_{H}=-1 \quad$ No interaction with e_{R}
No contribution $q_{R R}, q_{L R}, q_{R L}$ in $\mu^{+} \mu^{-}$

$$
x_{H}=0.5
$$

No contribution $q_{R R}, q_{L R}$ in $\bar{t} \bar{t}$

$x_{H}=1 \quad$ No interaction with d_{R}

No contribution $q_{R R}, q_{L R}$ in $\mathrm{b} \overline{\mathrm{b}}$

1 -

Integrated Forward - Backward Asymmetry $\left(\mathrm{e}^{-} \mathrm{e}^{+} \rightarrow \mu^{-} \mu^{+}\right): \mathscr{A}_{\mathrm{FB}} \quad M_{\mathrm{Z}^{\prime}}=7.5 \mathrm{TeV}$

Integrated

$\mathcal{A}_{F B}\left(P_{e^{-}}, P_{e^{+}}\right)=\frac{\sigma_{F}\left(P_{e^{-}}, P_{e^{+}}\right)-\sigma_{B}\left(P_{e^{-}}, P_{e^{+}}\right)}{\sigma_{F}\left(P_{e^{-}}, P_{e^{+}}\right)+\sigma_{B}\left(P_{e^{-}}, P_{e^{+}}\right)}$

Deviation from the SM

$$
\Delta_{\mathcal{A}_{F B}}=\frac{\mathcal{A}_{\mathrm{FB}}^{U(1)_{X}}}{\mathcal{A}_{\mathrm{FB}}^{S M}}-1
$$

$$
x_{H}=2: 3.8 \% \text { for } \mathrm{P}_{\mathrm{e}^{-}}=-0.8 \text { at } 500 \mathrm{GeV}
$$

$$
x_{H}=1: 79 \% \text { for } \mathrm{P}_{\mathrm{e}^{-}}=-0.8 \text { at } 1 \mathrm{TeV}
$$

$$
x_{H}=-1: 20 \% \text { for } \mathrm{P}_{\mathrm{e}^{-}}=0.3 \text { at } 3 \mathrm{TeV}
$$

Statistical error

$$
\begin{gathered}
\Delta \mathcal{A}_{\mathrm{FB}}=2 \frac{\sqrt{n_{1} n_{2}}\left(\sqrt{n_{1}}+\sqrt{n_{2}}\right)}{\left(n_{1}+n_{2}\right)^{2}}=\frac{2 \sqrt{n_{1} n_{2}}}{\left(n_{1}+n_{2}\right)\left(\sqrt{n_{1}}-\sqrt{n_{2}}\right)} \mathcal{A}_{F B} \\
\left(n_{1}, n_{2}\right)=\left(N_{F}, N_{B}\right) \quad N_{F(B)}=L_{\mathrm{int}} \sigma_{F(B)}\left(P_{e^{-}}, P_{e^{+}}\right)
\end{gathered}
$$

Differenial and integarted Left - Right Asymmetry $\left(\mathrm{e}^{-} \mathrm{e}^{+} \rightarrow \mu^{-} \mu^{+}\right): \mathscr{A}_{\mathrm{LR}} M_{Z^{\prime}}=7.5 \mathrm{TeV}$

Differential Left - Right, Forward - Backward Asymmetry $\left(\mathrm{e}^{-} \mathrm{e}^{+} \rightarrow \mu^{-} \mu^{+}\right): \mathscr{A}_{\mathrm{LR}, \mathrm{FB}}$

Statistical error
$\Delta \mathcal{A}_{L R, F B}=2 \frac{\left(n_{3}+n_{2}\right)\left(\sqrt{n_{1}}+\sqrt{n_{4}}\right)+\left(n_{1}+n_{4}\right)\left(\sqrt{n_{3}}+\sqrt{n_{2}}\right)}{\left(n_{1}+n_{4}\right)^{2}-\left(n_{3}+n_{2}\right)^{2}} A_{L R, F B}$

Differential

$$
M_{Z^{\prime}}=7.5 \mathrm{TeV}
$$

$\mathcal{A}_{L R, F B}(\cos \theta)=\frac{\left[\sigma_{\mathrm{LR}}(\cos \theta)-\sigma_{\mathrm{RL}}(\cos \theta)\right]-\left[\sigma_{\mathrm{LR}}(-\cos \theta)-\sigma_{\mathrm{RL}}(-\cos \theta)\right]}{\left[\sigma_{\mathrm{LR}}(\cos \theta)+\sigma_{\mathrm{RL}}(\cos \theta)\right]+\left[\sigma_{\mathrm{LR}}(-\cos \theta)+\sigma_{\mathrm{RL}}(-\cos \theta)\right]}$
Deviation from the SM
$\Delta_{\mathcal{A}_{L R, F B}}(\cos \theta)=\frac{\mathcal{A}_{L R, F B}{ }^{\mathrm{U}(1) \mathrm{x}}(\cos \theta)}{\mathcal{A}_{L R, F B}{ }^{\mathrm{SM}}(\cos \theta)}-1$
$x_{H}=2: 8.2 \%$ for at 250 GeV

24 Deviations in total cross sections from SM is more than 100% for $\mathrm{x}_{\mathrm{H}} \geq 1$ for $\sqrt{\mathrm{s}}=3 \mathrm{TeV}$. For $\sqrt{\mathrm{s}}<3 \mathrm{TeV}$ the deviation is also sizable .

Bhabha scattering

$q_{s}(s)^{\mathrm{LL}}=\frac{e^{2}}{s}+\frac{g_{L}^{2}}{s-M_{Z}^{2}+i M_{Z} \Gamma_{Z}}+\frac{g_{L}^{\prime 2}}{s-M_{Z^{\prime}}^{2}+i M_{Z^{\prime}} \Gamma_{Z^{\prime}}}$
$q_{s}(s)^{\mathrm{RR}}=\frac{e^{2}}{s}+\frac{g_{R}^{2}}{s-M_{Z}^{2}+i M_{Z} \Gamma_{Z}}+\frac{g_{R}^{2}}{s-M_{Z^{\prime}}^{2}+i M_{Z^{\prime}} \Gamma_{Z^{\prime}}}$
$q_{s}(s)^{\mathrm{LR}}=q_{s}(s)^{\mathrm{RL}}=\frac{e^{2}}{s}+\frac{g_{L} g_{R}}{s-M_{Z}^{2}+i M_{Z} \Gamma_{Z}}+\frac{g_{L}^{\prime} g_{R}^{\prime}}{s-M_{Z^{\prime}}^{2}+i M_{Z^{\prime}} \Gamma_{Z^{\prime}}}$
s - channel

$$
\begin{aligned}
& q_{t}(s, \theta)^{\mathrm{LL}}=\frac{e^{2}}{t}+\frac{g_{L}^{2}}{t-M_{Z}^{2}+i M_{Z} \Gamma_{Z}}+\frac{g_{L}^{\prime 2}}{t-M_{Z^{\prime}}^{2}+i M_{Z^{\prime}} \Gamma_{Z^{\prime}}} \\
& q_{t}(s, \theta)^{\mathrm{RR}}=\frac{e^{2}}{t}+\frac{g_{R}^{2}}{t-M_{Z}^{2}+i M_{Z} \Gamma_{Z}}+\frac{g_{R}^{2}}{t-M_{Z^{\prime}}^{2}+i M_{Z^{\prime}} \Gamma_{Z^{\prime}}} \\
& q_{t}(s, \theta)^{\mathrm{LR}}=q_{t}(s, \theta)^{\mathrm{RL}}=\frac{e^{2}}{t}+\frac{g_{L} g_{R}}{t-M_{Z}^{2}+i M_{Z} \Gamma_{Z}}+\frac{g_{L}^{\prime} g_{R}^{\prime}}{t-M_{Z^{\prime}}^{2}+i M_{Z^{\prime}} \Gamma_{Z^{\prime}}}
\end{aligned}
$$

$s\left|q^{\mathrm{LL}}\right|=s\left|q_{s}(s)^{\mathrm{LL}}+q_{t}(s, \theta)^{\mathrm{LL}}\right|$
$s\left|q^{\mathrm{LR}}\right|=s\left|q_{s}(s)^{\mathrm{LR}}+q_{t}(s, \theta)^{\mathrm{LR}}\right|$
$s\left|q^{\mathrm{RL}}\right|=s\left|q_{s}(s)^{\mathrm{RL}}+q_{t}(s, \theta)^{\mathrm{RL}}\right|$
$s\left|q^{\mathrm{RR}}\right|=s\left|q_{s}(s)^{\mathrm{RR}}+q_{t}(s, \theta)^{\mathrm{RR}}\right|$

$$
t-\text { channel }
$$

combined

Deviation in differential scattering cross section

 $\mathrm{M}_{\mathrm{Z}}^{\prime}=7.5 \mathrm{TeV}$maximum deviation 0.6%
maximum deviation 10%

maximum deviation 2.3%

Differential LR asymmetry
$\mathrm{M}_{\mathrm{Z}}^{\prime}=7.5 \mathrm{TeV}$
maximum deviation $1-2 \%$

maximum deviation $2.3-4.3 \%$
$\sqrt{s}=500 \mathrm{GeV}$

maximum deviation $12-13 \%$
$\sqrt{s}=1 \mathrm{TeV}$

Integrated LR asymmetry

$M_{Z^{\prime}}=7.5 \mathrm{TeV}$

The choices of x_{H} enhance the discovery potential

Conclusions
We are looking for a scenario where which can explain a variety of beyond the SM sceanrios.

The proposal for the generation of the tiny neutrino mass, from the seesaw mechanism, under investigation at the energy frontier. We study $\mathscr{A}_{\mathrm{FB}}, \mathscr{A}_{\mathrm{LR}}, \mathscr{A}_{\mathrm{LR}, \mathrm{FB}}$. The asymmetries are sizable at the 250 GeV and 500 GeV e - e^{+}colliders or higher in the near future.

Such a model can be studied at muon colliders with high CM energy This allows us to probe heavier Z^{\prime}.

The motovation of this work is to find a new particle and/or a new force carrier as a part of the of the new physics searches including a variety of BSM aspects.

Back-up Slides

Limits on $\mathrm{g}^{\prime}-\mathrm{M}_{\mathrm{Z}^{\prime}}$ plane $\mathbf{1}$

Bounds on a sample B -L scenario with $x_{H}=0, x_{\Phi}=1$

