Exploring Right Handed Neutrinos at ILC

Jurina NAKAJIMA^A, Daniel Jeans^B, Arindam Das^C, Keisuke FUJII^B

SOKENDAI^A, KEK^B, Hokkaido Univ.^C

14,July 2021(JST)

I

Α

кеND

S O

The 72nd General Meeting of ILC Physics Subgroup

Motivation

The right handed neutrino(RHN) can address the following big questions

- Why does matter dominate anti-matter in our universe?
- Why is neutrino mass so small?
- Do quarks and leptons unifiy?

Right handed neutrino is assumed to be a Majorana particle.($\nu = \bar{\nu}$)

Model

jurina@post.kek.jp

2 benchmark points

Not excluded by LHC

M _N [GeV]	Mz [,] [TeV]	gl'	V _{eN} 2	σ _{LR} (ee→NN) [fb]	Event # [4000fb-1]
100	7	1	0.001	7.08E-01	1619
200	7	1	0.005	1.63E-01	372

LCWS2021

▶ minimal U(1)_{B-L} model

- $\bullet \sigma_{LR} = \sigma_{RL} (100\%)$
- Signal samples (only LR)
- ▶ ILC 500 with ISR / BS
- Senerated event # = 5000

 $Pol(-0.8, +0.3), (+0.8, -0.3) : \mathcal{L} = 1600 \,[\text{fb}^{-1}]$ $Pol(+0.8, +0.3), (-0.8, -0.3) : \mathcal{L} = 400 \,[\text{fb}^{-1}]$

Analysis tool

Fast simulation

 using Delphes with the "generic ILC detector card" recently prepared for the US Snowmass study
Friendly to newcomers

jurina@post.kek.jp

Reconstruction methods

After removing isolated e, μ, γ force into 4 jets (Durham) √e[→] er Search for the correct combination of jj and jje Best jet pair 1 + iso $e \rightarrow M_{ije1}$ Jet pair 1 $\rightarrow M_{jj1}$, Jet pair 2 $\rightarrow M_{jj2}$ Best jet pair 2 + iso $e \rightarrow M_{ije2}$ $F = (M_{ii1} - M_w)^2 + (M_{ii2} - M_w)^2$ We expect for " $M_{ije1} = M_{ije2}$ " $F = (M_{ije1} - M_{ije2})^2$

Choose combination with minimum F

jurina@post.kek.jp

Reconstruction of W and RHN

isolated electrons =2 && # isolated photons = 0 Choose the **best** combination

Comparison between MC and Reconstructed W Bosons and RHN

▶M_N =200 GeV

Back grounds

However... We need to consider as the follow.

Charge misidentification

Add to full simulation back ground samples.

eexyyx, xxxxee, yyyyee (All polarization) x...up type quark y...down type quark

Cross section – BG

(100%,100%)	еехуух	xxxxee	ууууее	
eLpR	1.64E+01	8.71E-02	1.45E-01	
eRpL	3.64	4.62E-02	5.31E-02	
eLpL	6.63	3.38E-02	2.20E-02	
eRpR	6.61	3.30E-02	1.97E-02	

Electron Charge

ILC 500 with ISR / BS (80,30)

 e_{R}^{+}

N

We use only same sign samples (Charge == 1)

jurina@post.kek.jp

RHN process

Isolated electron energy

ILC 500 with ISR / BS (80,30)

cos θ_{isoe}

ILC 500 with ISR / BS(80,30)

 $-0.95 < \cos\theta_{isoe} < 0.95$

jurina@post.kek.jp

RHN process

Reconstructed

isolated electrons =2 && # isolated photons = 0 $E_{iso} < 200 [GeV] \&\& -0.95 < \cos\theta_{isoe} < 0.95$

BG is not quite free but we can remove

jurina@post.kek.jp

RHN process

Summary & Future work

- Carried out fast simulation for RHN pair production using Delphes miniDST framework
- Consider the charge misidentification in the backgrounds process

-----> BG is not quite free but we can remove these.

Event # [4000fb⁻¹]

Consider more cut condition

Current limits - Z' mass

SM like Z' coupling

01 (10 10 ع 10 ATLAS Simulation --- Expected limit **ILC250** 0.100 √s = 14 TeV, 3000 fb⁻¹ Expected ± 1σ Expected $\pm 2\sigma$ Z' → ee 10⁻² 0.010 —Z'_{ззм} $<\mu> = 200$ $\sigma(e^+e^- \rightarrow N^i N^i)$ [fb] 10⁻³ 0.001 10-4 10-4 minimal B-L model MN_{1,2,3} = 50 GeV 10-5 10⁻⁵ MN_{1,2,3} = 100 GeV Alternative B-L model 10-6 10⁻⁶ $MN_{1,2} = 50 \text{ GeV}$ $MN_{1,2} = 100 \text{ GeV}$ 10-7 10⁻⁷L 5 6 6.5 3.57 7.55.5 M_z [TeV] mz'[TeV] ATLAS-TDR-LHCC2017-2018 arXiV[1812.11931]

HL-LHC prospects limit for U(1)_{B-L} model

The heavier Z' mass less constrained by LHC

jurina@post.kek.jp

Current limits IV_{eN}I²

IV_{eN}I² : the "light-heavy" neutrino mixing matrix

<u>CMS PAS EXO-19-019</u>

Current Limits and prospects - Z' mass,g1'

G1':U(1)_{B-L} gauge coupling constant

M _N [GeV]	Mz [,] [TeV]	gl'	V _{eN} 2	σ _{LR} (ee→NN)	Event # [2000fb-1]
100	7	1	0.001	4.53E-02	50

Cross section with the beam polarization

$$\sigma(P_-, P_+) = \left(\frac{1-P_-}{2}\right) \left(\frac{1+P_+}{2}\right) \sigma_L + \left(\frac{1+P_-}{2}\right) \left(\frac{1-P_+}{2}\right) \sigma_R \ (\sigma_L = \sigma_R)$$

 $Pol(-0.8, +0.3), Pol(+0.8, -0.3) : \mathcal{L} = 900 \,[fb^{-1}]$ $Pol(+0.8, +0.3), Pol(-0.8, -0.3) : \mathcal{L} = 100 \,[fb^{-1}]$

jurina@post.kek.jp

Isolated particles (Signal + Backgrounds)

jurina@post.kek.jp