Search for Higgs decaying to exotic scalers using kinematic fit

Yu Kato, Tomohiko Tanabe, Masakazu Kurata,
Shogo Kajiwara, Takanori Mogi, Satoru Yamashita
The University of Tokyo, Iwate Prefectural University, KEK, ICEPP
The $72^{\text {nd }}$ General Meeting of ILC Physics Subgroup
July 14, 2021

Search for Higgs \rightarrow scalar mediator

- Motivation:
- Higgs can couple to WIMP DM through the scalar mediator φ.
- The mediator appears as the Higgs exotic decay.
- Target channel:
- e+e- $\rightarrow \mathrm{ZH} \rightarrow \mu \mu \varphi \varphi \rightarrow \mu \mu \mathrm{bbbb}$
- Simulation setup:
- Generator: WHIZARD 2.8.5
- Assumption of φ mass: $15,30,45,60[\mathrm{GeV}]$
- ILC parameter:
- $\mathrm{V}_{\mathrm{s}}=250 \mathrm{GeV}$, polarization $\{(-0.8,+0.3),(+0.8,-0.3)\}$
- Detector: ILD latest setting (mc-2020)
- Status:
\checkmark Sample preparation
- Generate sample with the MSSM_CKM model
- Simulate with DDSim, Reconstruct with MarlinStdReco, the same as the mc-2020 setting
\checkmark Fast analysis
- IsolatedLeptonTagging, JetClustering (4-jet) and Flavor tagging
- How the WIMP can be defected at ILC?

SM Mediator ϕ is feebly interacting with SM particles except the Higgs boson, so that it is efficiently M detected by observing the exotic Higgs decay!! It covers the most important parameter region!
[S.M., Y. S. Tsai, P. Y. Tsng, JHEP07, 2019]
S. Matsumoto(Kavli IPMU), ILC summer camp 2020

- I use only the main background process of $\mu \mu \mathrm{H}$.
> Test fitting
\square Detailed analysis

Fast Analysis of $h \varphi \varphi$: b-probability

b-tag cut

Sum\$(bprob)/4 \leftarrow BEST
Max Significance $=0.0101048$

when Sum $\$($ bprob $) / 4=0.764$-> Sum $\$($ bprob $)=3.056$
eff $=0.37548$, pur=0. 290283
(bprob[0][1]+bprob[1][1])/2
Max Significance $=0.00671638$
when (bprob[0][1]+bprob[1][1])/2 $=0.734$
eff $=0.484895$, pur $=0.0993059$
bprob[0][0]*bprob[0][1]*bprob[1][0]*bprob[1][1]
Max Significance $=0.0100021$
when bprob[0][0]*bprob[0][1]*bprob[1][0]*bprob[1][1] $=0.147$
eff $=0.411827$, pur $=0.259309$

Higgs decay mode in remaining $\mu \mu \mathrm{H}$ process

- $\operatorname{Pol}=(-1,+1)$
- Cut: Sum\$(bprob)/4>3
- Efficiency $=610 / 500,000=0.122 \%$
- Remaining decay mode
- H->bb: ~82\%
- H->ZZ: ~16\%
- H->gg: ~2\%

Fast Analysis of h $\varphi \varphi$

- Signal: 20,000 events / pol.
- e2e2h: 500,000 events / pol.

Eile Edit View Options Iools
$(($ Sum $\$($ bprob $)>3) \& \&.($ flv $[0]==13 \& \& f|v|[1]==-13)) \&($ mrec $>120 \& \& m r e c<160)$

$(($ Sum $\$($ bprob $)>3) \& \&.(f|v[0]==13 \& \& f| v \mid[1]==-13)) \& \&($ mrec $>120 \& \& m r e c<160)$

- Cut
- Number of isolated lepton = 2, and tagged as muon pair
- Sum of 4 jet b-probability > 3
- The recoil mass is included in ($120 \mathrm{GeV}, 160 \mathrm{GeV}$).
- Including all the $2 \mathrm{f}, 4 \mathrm{f}$ and SM higgs backgrounds
- Remaining background is mainly $\mu \mu \mathrm{H}$ and a few $\mathrm{qqH}, \mathrm{T} \mathrm{TH}$.

Comparison of φ mass

Nb
$\mathrm{Nb}=11.12$
significance $=1.132$
$\mathrm{UL} \mathrm{L}_{95}=0.146 \%$

Eelp Eile Edit Yiew Qpitions Iools

$\mathrm{m} \varphi$ UL-left UL-right UL-comb 15 0.139\% 0.163\% 0.106\% 30 0.146\% 0.177\% 0.113\% 45 0.152\% 0.183\%
0.117\%

60 0.140\%
0.170\%
0.108\%

Test kinematic fitting

- Signal: 20,000 events / pol.
- e2e2h: 500,000 events / pol.
$(($ Sum $\$($ bprob $)>3) \& \&.(f|v|[0]==13 \& \& f|v|[1]==-13)) \& \&($ mrec $>120 \& \& m r e c<160)$
$(($ Sum $\$($ bprob $)>3) \& \&.(f|v|[0]==13 \& \& f|v|[1]==-13)) \&($ mrec $>120 \& \& m r e c<160)$

- Kinematic fitting are performed and get some improvement.
- Fit Object
- 2 MuonFitObject
- 4 JetFitObject
- 1 ISRPhotonFitObject
- Jet resolution: b-jet pair

backup

15 GeV

-
 X

File Edit Yiew Options Tools
$(($ Sum $\$($ bprob $)>3) \& \&.(f|v|[0]==13 \& \& f|v|[1]==-13)) \& \&(m r e c>120 \& \& m r e c<160)$

Processing drawHist.C("(mphi[0][0]+mphi[1][0])/2",0,100,20,-1,15)...
Draw (mphi[0][0]+mphi[1][0])/2
Cut: ((Sum\$(bprob) > 3.)\&\&(flv|[0]==13\&\&flv|[1]==-13))\&\&(mrec>120\&\&mrec<160) Warning in <TCanvas:: Constructor>: Deleting canvas with same name: c1 output_all/eqmass/hphiphi_m15_Ir.root: $\mathrm{nGen}=20000$, xsec $=16.9736$, eff $=0.32025$ output_all/eqmass/hphiphi_m15_rl.root: $\mathrm{nGen}=20000, \mathrm{xsec}=10.8664$, eff $=0.32225$ output_all/eqmass/e2e2h_Ir.root: $\mathrm{nGen}=500000, \mathrm{xsec}=16.9707$, eff $=0.0012$ output all/eqmass/e2e2h rl.root: $\mathrm{nGen}=500000$, xsec $=10.8691$, eff $=0.001152$ [Entries] hS: 12850 hB: 1176
[Integral] hS: 2.97087 hB: 11.1165
nbin $=20$
$\mathrm{x}=2.5, \mathrm{nS}=0, \mathrm{nB}=0, \mathrm{nS} / \mathrm{nB}=-\mathrm{nan}$
$\mathrm{x}=7.5, \mathrm{nS}=0, \mathrm{nB}=0, \mathrm{nS} / \mathrm{nB}=$-nan
$x=12.5, n S=0.220476, n B=0.0206091, n S / n B=10.698$ $\mathrm{x}=17.5, \mathrm{nS}=0.905668, \mathrm{nB}=0.217865, \mathrm{nS} / \mathrm{nB}=4.15702$ $\mathrm{x}=22.5, \mathrm{nS}=0.515337, \mathrm{nB}=0.698922, \mathrm{nS} / \mathrm{nB}=0.737332$ $\mathrm{x}=27.5, \mathrm{nS}=0.252194, \mathrm{nB}=0.906449, \mathrm{nS} / \mathrm{nB}=0.278221$ $\mathrm{x}=32.5, \mathrm{nS}=0.134799, \mathrm{nB}=1.27755, \mathrm{nS} / \mathrm{nB}=0.105514$ $\mathrm{x}=37.5, \mathrm{nS}=0.084818, \mathrm{nB}=1.58264, \mathrm{nS} / \mathrm{nB}=0.0535927$ $\mathrm{x}=42.5, \mathrm{nS}=0.0626495, \mathrm{nB}=1.68507, \mathrm{nS} / \mathrm{nB}=0.0371792$ $\mathrm{x}=47.5, \mathrm{nS}=0.0713428, \mathrm{nB}=1.70979, \mathrm{nS} / \mathrm{nB}=0.0417262$ $\mathrm{x}=52.5, \mathrm{nS}=0.124544, \mathrm{nB}=1.29473, \mathrm{nS} / \mathrm{nB}=0.0961931$ $\mathrm{x}=57.5, \mathrm{nS}=0.186542, \mathrm{nB}=0.850784, \mathrm{nS} / \mathrm{nB}=0.219258$ $\mathrm{x}=62.5, \mathrm{nS}=0.200734, \mathrm{nB}=0.45011, \mathrm{nS} / \mathrm{nB}=0.445966$ $\mathrm{x}=67.5, \mathrm{nS}=0.117037, \mathrm{nB}=0.220604, \mathrm{nS} / \mathrm{nB}=0.530531$ $\mathrm{x}=72.5, \mathrm{nS}=0.0562418, \mathrm{nB}=0.10996, \mathrm{nS} / \mathrm{nB}=0.511476$ $\mathrm{x}=77.5, \mathrm{nS}=0.0193298, \mathrm{nB}=0.0549798, \mathrm{nS} / \mathrm{nB}=0.351579$ $\mathrm{x}=82.5, \mathrm{nS}=0.0102923, \mathrm{nB}=0.0185549, \mathrm{nS} / \mathrm{nB}=0.554698$ $\mathrm{x}=87.5, \mathrm{nS}=0.00608261, \mathrm{nB}=0.0178701, \mathrm{nS} / \mathrm{nB}=0.340379$ $\mathrm{x}=92.5, \mathrm{nS}=0.00231972, \mathrm{nB}=0, \mathrm{nS} / \mathrm{nB}=\mathrm{inf}$ $x=97.5, n S=0.000463944, n B=0, n S / n B=i n f$ Significance $=1.18599, \mathrm{UL}=0.00139124$

30 GeV

O
 X

File Edit Yiew Options Iools
$(($ Sum $\$($ bprob $)>3) \& \&.(f|v|[0]==13 \& \&| | v \mid[1]==-13)) \& \&($ mrec>120\&\&mrec<160 $)$

Processing drawHist.C("(mphi[0][0]+mphi[1][0])/2",0,100,20,-1,30)...
Draw (mphi[0][0]+mphi[1][0])/2
Cut: ((Sum \$(bprob) > 3.)\&\&(flv[[0]==13\&\&flv|[1]==-13))\&\&(mrec>120\&\&mrec<160) output_all/eqmass/hphiphi_m30_Ir.root: $\mathrm{nGen}=20000$, $\mathrm{xsec}=16.9786$, eff $=0.3954$ output_all/eqmass/hphiphi_m30_rl.root: $\mathrm{nGen}=20000, \mathrm{xsec}=10.8586$, eff $=0.39175$ output_all/eqmass/e2e2h_Ir.root: $\mathrm{nGen}=500000, \mathrm{xsec}=16.9707$, eff $=0.0012$ output_all/eqmass/e2e2h_rl.root: $\mathrm{nGen}=500000$, xsec $=10.8691$, eff $=0.001152$ [Entries] hS: 15743 hB: 1176
[Integral] hS: $3.66813 \mathrm{hB}: 11.1165$ nbin $=20$
$\mathrm{x}=2.5, \mathrm{nS}=0, \mathrm{nB}=0, \mathrm{nS} / \mathrm{nB}=-\mathrm{nan}$
$\mathrm{x}=7.5, \mathrm{nS}=0, \mathrm{nB}=0, \mathrm{nS} / \mathrm{nB}=-\mathrm{nan}$
$\mathrm{x}=12.5, \mathrm{nS}=0, \mathrm{nB}=0.0206091, \mathrm{nS} / \mathrm{nB}=0$
$x=17.5, n S=0.00137509, n B=0.217865, n S / n B=0.00631168$
$\mathrm{x}=22.5, \mathrm{nS}=0.0900823, \mathrm{nB}=0.698922, \mathrm{nS} / \mathrm{nB}=0.128888$ $x=27.5, n S=0.880732, n B=0.906449, n S / n B=0.971629$ $x=32.5, n S=1.14801, n B=1.27755, n S / n B=0.898609$ $\mathrm{x}=37.5, \mathrm{nS}=0.425311, \mathrm{nB}=1.58264, \mathrm{nS} / \mathrm{nB}=0.268735$ $\mathrm{x}=42.5, \mathrm{nS}=0.207743, \mathrm{nB}=1.68507, \mathrm{nS} / \mathrm{nB}=0.123284$ $x=47.5, n S=0.16574, n B=1.70979, n S / n B=0.096936$ $\mathrm{x}=52.5, \mathrm{nS}=0.198432, \mathrm{nB}=1.29473, \mathrm{nS} / \mathrm{nB}=0.153261$ $\mathrm{x}=57.5, \mathrm{nS}=0.209118, \mathrm{nB}=0.850784, \mathrm{nS} / \mathrm{nB}=0.245794$ $\mathrm{x}=62.5, \mathrm{nS}=0.166824, \mathrm{nB}=0.45011, \mathrm{nS} / \mathrm{nB}=0.37063$ $\mathrm{x}=67.5, \mathrm{nS}=0.0897527, \mathrm{nB}=0.220604, \mathrm{nS} / \mathrm{nB}=0.40685$ $\mathrm{x}=72.5, \mathrm{nS}=0.0452196, \mathrm{nB}=0.10996, \mathrm{nS} / \mathrm{nB}=0.411238$ $\mathrm{x}=77.5, \mathrm{nS}=0.022705, \mathrm{nB}=0.0549798, \mathrm{nS} / \mathrm{nB}=0.41297$ $\mathrm{x}=82.5, \mathrm{nS}=0.00919579, \mathrm{nB}=0.0185549, \mathrm{nS} / \mathrm{nB}=0.4956$ $\mathrm{x}=87.5, \mathrm{nS}=0.00288701, \mathrm{nB}=0.0178701, \mathrm{nS} / \mathrm{nB}=0.161555$ $\mathrm{x}=92.5, \mathrm{nS}=0.00362701, \mathrm{nB}=0, \mathrm{nS} / \mathrm{nB}=\mathrm{inf}$ $\mathrm{x}=97.5, \mathrm{nS}=0.00137509, \mathrm{nB}=0, \mathrm{nS} / \mathrm{nB}=\mathrm{inf}$ Significance $=1.13233, \mathrm{UL}=0.00145717$

45 GeV

O
 |X

File Edit View Options Tools
$(($ Sum $\$($ bprob $)>3) \& \&.(f|v|[0]==13 \& \& f|v|[1]==-13)) \& \&($ mrec $>120 \& \& m r e c<160)$

Processing drawHist.C("(mphi[0][0]+mphi[1][0])/2",0,100,20,-1,45)...
Draw (mphi[0][0]+mphi[1][0])/2
Cut: $(($ Sum $\$($ bprob $)>3) \& \&.(f|v|[0]==13 \& \& f|v|[1]==-13)) \& \&($ mrec>120\&\&mrec<160) Warning in <TCanvas:: Constructor>: Deleting canvas with same name: c1 output_all/eqmass/hphiphi_m45_Ir.root: $\mathrm{nGen}=20000, \mathrm{xsec}=16.9785$, eff $=0.3947$ output_all/eqmass/hphiphi_m45_rl.root: $\mathrm{nGen}=20000, \mathrm{xsec}=10.8664$, eff $=0.3971$ output_all/eqmass/e2e2h_Ir.root: $\mathrm{nGen}=500000, \mathrm{xsec}=16.9707$, eff $=0.0012$ output all/eqmass/e2e2h rl.root: $\mathrm{nGen}=500000, \mathrm{xsec}=10.8691$, eff $=0.001152$ [Entries] hS: $15836 \mathrm{hB}: 1176$
[Integral] hS: 3.66375 hB: 11.1165
nbin $=20$
$\mathrm{x}=2.5, \mathrm{nS}=0, \mathrm{nB}=0, \mathrm{nS} / \mathrm{nB}=-$ nan
$\mathrm{x}=7.5, \mathrm{nS}=0, \mathrm{nB}=0, \mathrm{nS} / \mathrm{nB}=-\mathrm{nan}$
$\mathrm{x}=12.5, \mathrm{nS}=0, \mathrm{nB}=0.0206091, \mathrm{nS} / \mathrm{nB}=0$
$\mathrm{x}=17.5, \mathrm{nS}=0.00044696, \mathrm{nB}=0.217865, \mathrm{nS} / \mathrm{nB}=0.00205155$ $\mathrm{x}=22.5, \mathrm{nS}=0.0023546, \mathrm{nB}=0.698922, \mathrm{nS} / \mathrm{nB}=0.00336891$ $\mathrm{x}=27.5, \mathrm{nS}=0.0279834, \mathrm{nB}=0.906449, \mathrm{nS} / \mathrm{nB}=0.0308714$ $\mathrm{x}=32.5, \mathrm{nS}=0.0703149, \mathrm{nB}=1.27755, \mathrm{nS} / \mathrm{nB}=0.055039$ $\mathrm{x}=37.5, \mathrm{nS}=0.333217, \mathrm{nB}=1.58264, \mathrm{nS} / \mathrm{nB}=0.210545$ $\mathrm{x}=42.5, \mathrm{nS}=1.09561, \mathrm{nB}=1.68507, \mathrm{nS} / \mathrm{nB}=0.650189$ $x=47.5, n S=1.0593, n B=1.70979, n S / n B=0.619549$ $\mathrm{x}=52.5, \mathrm{nS}=0.491193, \mathrm{nB}=1.29473, \mathrm{nS} / \mathrm{nB}=0.379378$ $x=57.5, \mathrm{nS}=0.275883, \mathrm{nB}=0.850784, \mathrm{nS} / \mathrm{nB}=0.324269$ $\mathrm{x}=62.5, \mathrm{nS}=0.154952, \mathrm{nB}=0.45011, \mathrm{nS} / \mathrm{nB}=0.344253$ $\mathrm{x}=67.5, \mathrm{nS}=0.0823315, \mathrm{nB}=0.220604, \mathrm{nS} / \mathrm{nB}=0.373209$ $\mathrm{x}=72.5, \mathrm{nS}=0.0355626, \mathrm{nB}=0.10996, \mathrm{nS} / \mathrm{nB}=0.323415$ $\mathrm{x}=77.5, \mathrm{nS}=0.0194398, \mathrm{nB}=0.0549798, \mathrm{nS} / \mathrm{nB}=0.353581$ $\mathrm{x}=82.5, \mathrm{nS}=0.00962577, \mathrm{nB}=0.0185549, \mathrm{nS} / \mathrm{nB}=0.518774$ $\mathrm{x}=87.5, \mathrm{nS}=0.00360991, \mathrm{nB}=0.0178701, \mathrm{nS} / \mathrm{nB}=0.202008$ $x=92.5, n S=0.000996608, n B=0, n S / n B=\inf$
$x=97.5, \mathrm{nS}=0.00092815, \mathrm{nB}=0, \mathrm{nS} / \mathrm{nB}=\mathrm{inf}$
Significance $=1.08797, \mathrm{UL}=0.00151659$

60 GeV

O
 X

Eile Edit View Options Tools
$(($ Sum $\$($ bprob $)>3) \& \&.(f|v|[0]==13 \& \&| | v \mid[1]==-13)) \& \&(m r e c>120 \& \& m r e c<160)$

Processing drawHist.C("(mphi[0][0]+mphi[1][0])/2",0,100,20,-1,30)...
Draw (mphi[0][0]+mphi[1][0])/2
Cut: $(($ Sum $\$($ bprob $)>3) \& \&.(f|v|[0]==13 \& \& f|v|[1]==-13)) \& \&($ mrec>120\&\&mrec<160) Warning in <TCanvas:: Constructor>: Deleting canvas with same name: c1 output_all/eqmass/hphiphi_m60_Ir.root: $\mathrm{nGen}=20000, \mathrm{xsec}=16.9953$, eff $=0.4134$ output_all/eqmass/hphiphi_m60_rl.root: $\mathrm{nGen}=20000$, xsec $=10.8563$, eff $=0.4155$ output_all/eqmass/e2e2h_Ir.root: $\mathrm{nGen}=500000, \mathrm{xsec}=16.9707$, eff $=0.0012$ output all/eqmass/e2e2h rl.root: $\mathrm{nGen}=500000$, xsec $=10.8691$, eff $=0.001152$ [Entries] hS: 16578 hB: 1176
[Integral] hS: $3.84121 \mathrm{hB}: 11.1165$
nbin $=20$
$\mathrm{x}=2.5, \mathrm{nS}=0, \mathrm{nB}=0, \mathrm{nS} / \mathrm{nB}=-$ nan
$\mathrm{x}=7.5, \mathrm{nS}=0, \mathrm{nB}=0, \mathrm{nS} / \mathrm{nB}=$-nan
$\mathrm{x}=12.5, \mathrm{nS}=0, \mathrm{nB}=0.0206091, \mathrm{nS} / \mathrm{nB}=0$
$\mathrm{x}=17.5, \mathrm{nS}=0.0013935, \mathrm{nB}=0.217865, \mathrm{nS} / \mathrm{nB}=0.00639618$ $\mathrm{x}=22.5, \mathrm{nS}=0.0265449, \mathrm{nB}=0.698922, \mathrm{nS} / \mathrm{nB}=0.0379799$ $\mathrm{x}=27.5, \mathrm{nS}=0.0931054, \mathrm{nB}=0.906449, \mathrm{nS} / \mathrm{nB}=0.102714$ $\mathrm{x}=32.5, \mathrm{nS}=0.190081, \mathrm{nB}=1.27755, \mathrm{nS} / \mathrm{nB}=0.148786$ $\mathrm{x}=37.5, \mathrm{nS}=0.289521, \mathrm{nB}=1.58264, \mathrm{nS} / \mathrm{nB}=0.182935$ $\mathrm{x}=42.5, \mathrm{nS}=0.362499, \mathrm{nB}=1.68507, \mathrm{nS} / \mathrm{nB}=0.215124$ $\mathrm{x}=47.5, \mathrm{nS}=0.440897, \mathrm{nB}=1.70979, \mathrm{nS} / \mathrm{nB}=0.257867$ $\mathrm{x}=52.5, \mathrm{nS}=0.616327, \mathrm{nB}=1.29473, \mathrm{nS} / \mathrm{nB}=0.476027$ $\mathrm{x}=57.5, \mathrm{nS}=0.873293, \mathrm{nB}=0.850784, \mathrm{nS} / \mathrm{nB}=1.02646$ $\mathrm{x}=62.5, \mathrm{nS}=0.636543, \mathrm{nB}=0.45011, \mathrm{nS} / \mathrm{nB}=1.41419$ $\mathrm{x}=67.5, \mathrm{nS}=0.205808, \mathrm{nB}=0.220604, \mathrm{nS} / \mathrm{nB}=0.93293$ $\mathrm{x}=72.5, \mathrm{nS}=0.0643234, \mathrm{nB}=0.10996, \mathrm{nS} / \mathrm{nB}=0.584973$ $\mathrm{x}=77.5, \mathrm{nS}=0.0263911, \mathrm{nB}=0.0549798, \mathrm{nS} / \mathrm{nB}=0.480014$ $\mathrm{x}=82.5, \mathrm{nS}=0.00977162, \mathrm{nB}=0.0185549, \mathrm{nS} / \mathrm{nB}=0.526634$ $\mathrm{x}=87.5, \mathrm{nS}=0.00416341, \mathrm{nB}=0.0178701, \mathrm{nS} / \mathrm{nB}=0.232982$ $\mathrm{x}=92.5, \mathrm{nS}=0.000549994, \mathrm{nB}=0, \mathrm{nS} / \mathrm{nB}=\mathrm{inf}$
$\mathrm{x}=97.5, \mathrm{nS}=0, \mathrm{nB}=0, \mathrm{nS} / \mathrm{nB}=-\mathrm{nan}$
Significance $=1.17641, \mathrm{UL}=0.00140257$

95\% C.L. upper limit on selected Higgs Exotic Decay BR

Fig. 12. The 95\% C.L. upper limit on selected Higgs exotic decay branching fractions at HL-LHC, CEPC, ILC and FCC-ee. The benchmark parameter choices are the same as in Table 3 . We put several vertical lines in this figure to divide different types of Higgs exotic decays.

Introduction: Kinematic fit

- Kinematic fit:
- one of the constrained optimization method
- adjustment of measured kinematic parameters under certain constraints
- distributions of parameters e.g. energy resolution
- kinematic relations among the parameters e.g. energy conservation
- Purposes:
- improve accuracy of measurements (reconstruction)
- estimate how well a given event matches a signal model (event selection)
- Standard procedure: minimize χ^{2}

$$
\chi^{2}(\boldsymbol{\eta}, \boldsymbol{\xi}, \boldsymbol{\lambda})=(\boldsymbol{y}-\boldsymbol{\eta})^{T} \boldsymbol{V}^{-1}(\boldsymbol{y}-\boldsymbol{\eta})-2 \boldsymbol{\lambda}^{T} \boldsymbol{h}(\boldsymbol{\eta}, \boldsymbol{\xi})
$$

y : measured variables
η : fit parameters
V : covariance matrix
ξ : unmeasured parameters
λ : Lagrange multipliers
h : constraint functions

Our approach for non-Gaussian distributions

- The basic method assumes that the measured parameters would have Gaussian error against the true value.
- In order to treat arbitrary error distributions, the chi-square term is re-defined as the log-likelihood function;

$$
\begin{aligned}
\chi^{2}(\boldsymbol{\eta}, \boldsymbol{\xi}, \boldsymbol{\lambda}) & =-2 \ln L_{f o}(\boldsymbol{\eta})-2 \boldsymbol{\lambda}^{T} \boldsymbol{h}(\boldsymbol{\eta}, \boldsymbol{\xi})-2 \ln L_{s c}(\boldsymbol{\eta}, \boldsymbol{\xi}) \\
L_{f o}(\boldsymbol{\eta}) & =\prod_{i=1}^{n} f_{i}\left(y_{i} ; \eta_{i}\right) \quad L_{s c}(\boldsymbol{\eta}, \boldsymbol{\xi})=\prod_{i=1}^{m} s_{i}(\boldsymbol{\eta}, \boldsymbol{\xi}) \\
f_{i}: \text { error distributions } & s_{i}: \text { soft constraint distributions }
\end{aligned}
$$

Note:

- The error distributions are normalized as the peak position returns 1.
- The soft constraint term is applied optionally.
- In the case of Gaussian distributions, the basic method is reproduced.

Notes on implementation

Requirements

- Numerical differentiation
- Although the Gaussian case can be solved analytically, the arbitrary case needs numerical calculation.
- Resolution information
- It is necessary to prepare the error distribution functions for each measured parameters.

Fitter algorithm

- Based on Sequential Quadratic Programming (SQP) method
- Hessian matrix is approximated by damped-BFGS method. (quasi-Newton method)
- The size of the iteration step (α) is adjusted by Armijo condition.

B-jet energy resolution

- The b-jet has asymmetric energy distribution due to neutrinos from semi-leptonic decay.
- We need to know the true energy distribution when a particular measured energy is obtained.
- The definition of the true jet:

Sum of the MCParticles which direction is close to reconstructed jet

- Including neutrinos
- The resolutions are evaluated as the function of $\left(\mathrm{E}_{\text {rec }} ; \cos \theta_{\text {rec }}\right)$ for each jet.

B-jet energy resolution: Evaluation setup

- Sample: b-jet pair
- ILD DBD full simulation
- E_{cm} : 20-240 GeV
- PandoraPFA -> Durham jet clustering (LCFIPlus)
- Workflow:

1. prepare data set of $\left(E_{m c}, E_{\text {rec }}\right)$ in specific $\cos \theta_{\text {rec }}$ window
2. generate $E_{m c}$ histogram in specific $E_{r e c}$ window

- normalized by all $\mathrm{E}_{\text {rec }}$ histogram
- Each E_{mc} entry is shifted according as $\mathrm{E}_{\text {rec }}$ value.

3. fit the spectrum

\uparrow True jet energy distribution for $E_{\text {rec }}=45.5 \pm 2.5 \mathrm{GeV}, \cos \theta_{\text {rec }}=[0 ., 0.05)$

- p1: Gaussian mean
- p2: Gaussian sigma
- p3: Connection boundary in sigma unit

B-jet energy resolution: Energy dependence

- Energy scan in the barrel region
- $\cos \theta_{\text {rec }}=[0 ., 0.05)$
- In the higher edge the spectrum varies due to the lack of statistics.
- Parameters between points are interpolated.

July 14, 2021

Yu Kato, 72nd ILC General Meeting

B-jet energy resolution: Angle dependence

- Angle scan at $\mathrm{E}_{\mathrm{rec}}=45.5 \mathrm{GeV}$
- JER is worse for forward jet as expected.

July 14, 2021

Yu Kato, 72nd ILC General Meeting

ISR spectrum

M. Beckmann, "Treatment of Photon Radiation in Kinematic Fits at Future e+e- Colliders" F.A. Berends and R. Kleiss, Nucl. Phys. B177 (1981) 237

- ISR: $\mathcal{P}\left(p_{\mathrm{z}, \gamma}\right)=\frac{\beta}{2 E_{\max }} \cdot\left|\frac{p_{\mathrm{z}, \gamma}}{E_{\max }}\right|^{\beta-1} \quad \beta=\frac{2 \alpha}{\pi}\left(\ln \frac{s}{m_{\mathrm{e}}^{2}}-1\right)$
- beamstrahlung: ?

ISR

beamstrahlung

Ecm - Z - H

