Prospects of machine learning studies for event reconstruction

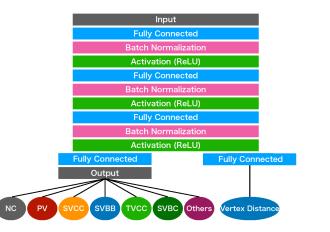
T. Suehara (Kyushu U.)

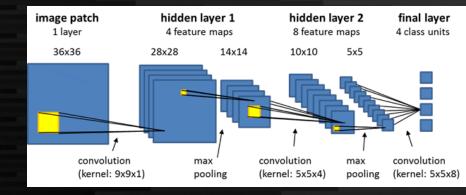
Disclaimer

This is just to show prospects.
 So no new results will be shown.
 New results will (hopefully) come from the next meeting.

Topics

- Deep learning: introduction
- Applications
 - Timing reconstruction
 - Vertex finder update
 - Flavor tagging

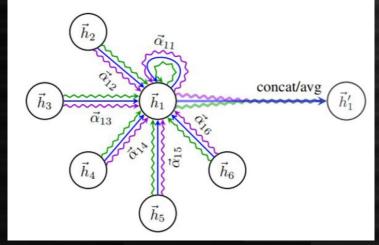

Introduction of deep learning


- Deep learning is featuring (compared to classical MVA)
 - Many (usually low-level) inputs eg.
 - Pictures, Languages
 - >1000 of input variables possible

→ Calculation of characteristic values is generally not needed (or favored) any more to avoid loss of information

- Complicated network structure
 - Fully-connected, convolutional, recurrent, etc.

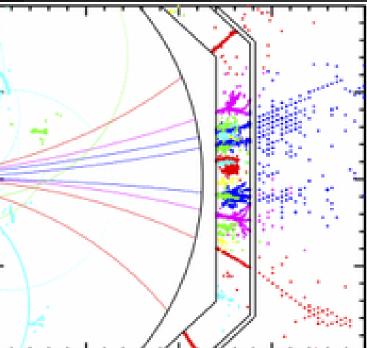

Network structures

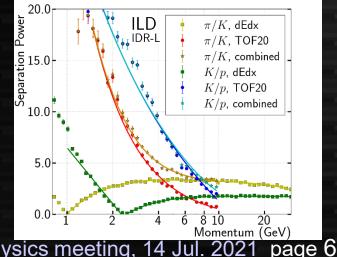


Convolutional Neural Network (CNN)

Normal (fully-connected) neutral network

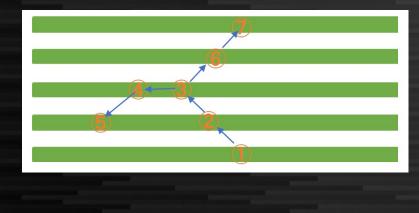
An unrolled recurrent neural network.

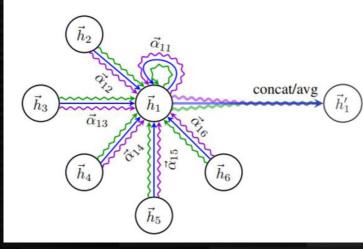



Recurrent Neural Network (RNN)Graph Neural NetworkMany variants like"Nodes + Edges"LSTM, Attention, TransformerGCN or GAN popularTaikan Suehara, ILC-JP general physics meeting, 14 Jul. 2021 page 5

Application 1: timing reconstruction

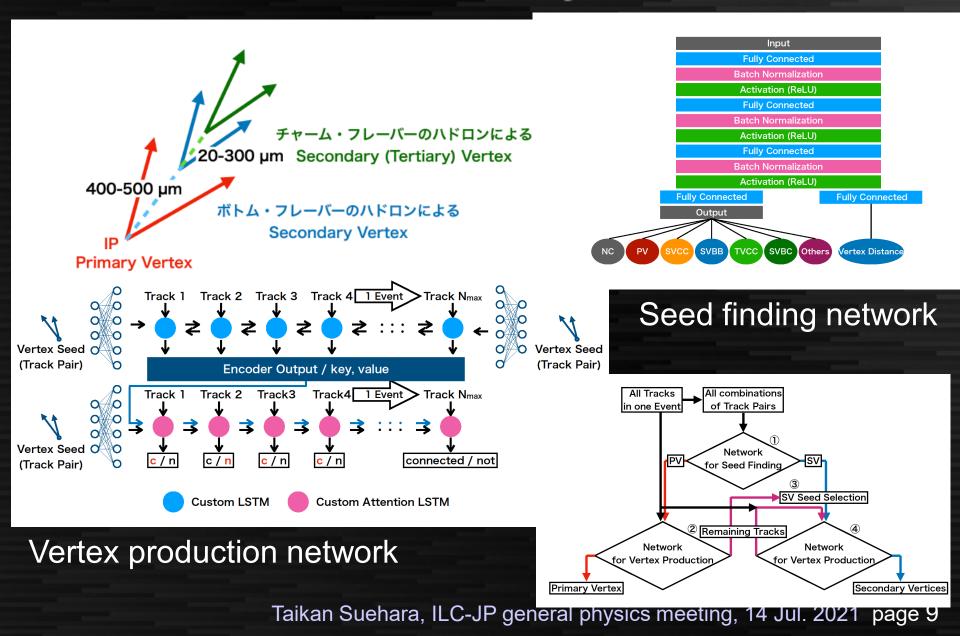
- Time-of-Flight (ToF)


 is a powerful tool for
 hadron ID (π/K/p separation)
 < 20 psec required
- At calorimeters, hits can be averaged to improve timing resolution of the sensors
- Hadrons @ ECAL
 - Track-like: easy to average
 - Track + 2ndaries
 - Have to identify path inside CAL
 - Showering
 - Separate usable/unausable/mitgeneral physics meeting, 14 Jul. 2021



Timing by Graph Attention Network

- Input variables
 - Position, timing (smeared), energy deposit of each hit
- Output candidates
 - Ordering of hits (parent hit)
 - Averaged time at surface
- Structure
 - Graph attention network
 - Optimize "connection strength" between nodes (hits)

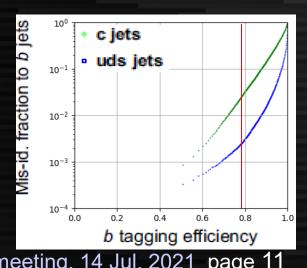


 Supervising connection (attention weights) or nodes after processing

Application 2: vertex finding

- Used as an input to flavor tagging
 - Current implementation inside LCFIPlus
- First implementation by K. Goto last year
 - Using same strategy as LCFIPlus
 - Classifying track pairs as "primary", "secondary" or "not connected"
 - 2. Try to attach tracks to "primary"/"secondary" pairs
 - Using a kind of "recurrent neural network"
 - Performance similar to LCFIPlus
 - High efficiency but more contamination
 - Need to be improved

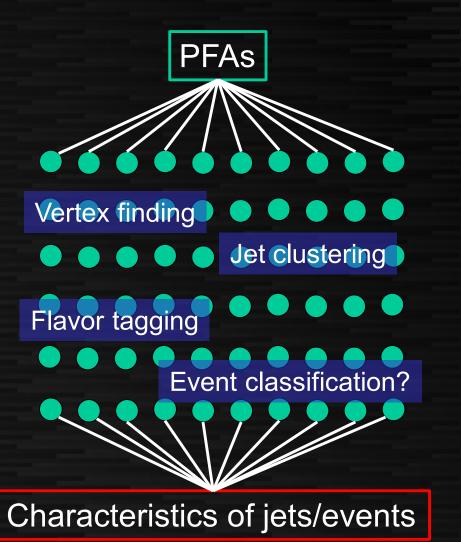
Vertex Finder by K. Goto


Vertex finder: to be studied

• Paring network

- Basically geometrical calculation to obtain crossing points of tracks
 - Not an easy job for ML (precision problem)
- Design network to support finding the crossing points
 - T-parameter notation of the track parameters
 - Matrix of t1-t2 to easily find crossing points
- Vertex production network
 - Try different network (eg. transformer or graph attention)
 - Consider how to pass information to flavor tagging
 - Minimizing information loss
- Combination of above two in network level
 - No practical design yet...

Application 3: flavor tagging


- LCFIPlus uses boosted decision trees (BDT)
 - Using vertices reconstructed in earlier stage
 - Categorization by number of vertices
 - 0, 1, 1+1 (pseudo-vtx), 2
 - 10-30 inputs on each category
 - Output: b-, c-, q- likeness
- Some DNN implementation for FCC study
 - "ParticleNet"-based, graph convolutional network(?)
- Iwasaki-san's results
 - Adding track parameters (without error matrices)
 - Already shows improvement Taikan Suehara, ILC-JP general physics meeting, 14 Jul. 2021 page 11

Flavor tagging: to be studied

- Adding low-level variables (tracks)
 - How to feed the network error matrices (with connection to parameters)
 - How to combine to high-level variables (vertices)
- Network structure
 - Graph-based? (not well considered yet)
- Check event dependence
 - LCFIPlus variables are carefully selected as quasi boost-invariant
 - Probably we should train with wide category of events
- More outputs
 - Vertex charge, b/c/s/g/ud separtaion?
 - Variables for s/g characterization? Taikan Suehara, ILC-JP general physics meeting, 14 Jul. 2021 page 12

Future target: total jet reco network?

- "Transfer learning" Using pre-trained partial network to solve bigger problems
- How to connect individual networks?
 - Or transferring abstract information to later?
- How to train individual networks?
- How to retrain full network?
- Full event reconstruction by ML (GPU/TPU/FPGA based computing farm for ILC?)