Shared Data and Algorithms for Deep Learning in Fundamental Physics

Erik Buhmann*, Erika Garutti, Gregor Kasieczka

with Lisa Benato, Jonas Glombitza, Martin Erdmann, Peter Fackeldey, Nikolai Hartmann, William Korcari, Thomas Kuhr, Jan Steinheimer, Horst Stöcker, Tilman Plehn, Kai Zhou

arXiv:2107.00656

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

10.09.2021

<u>GitHub: pd4ml</u>

Bundesministerium und Forschung

ErUM-Data IDT Collaboration

- IDT = Innovative Digital Technologies for Research on Universe and Matter (ErUM)
- German science project involving 17 partners from universities and research centres
- Tackling the challenge of increasing data rates and volumes
- Exploit modern technologies for the development of experiment overarching solutions

Bundesministerium für Bildung und Forschung

https://www.erum-data-idt.de

Challenges of Data Science in Physics

- Need for abundant training data for Machine Learning models
- Various data structures such as low-level or high-level observables, images, etc.
- Machine learning architecture designs often experiment specific
- Difficulties to communicate physics specific challenges to the wider computer science community
- -> Domain and experiment-specific data representations are inefficient:
 - Different groups replicate similar developments
 - Or: Shared Data and Algorithms for Deep Learning in Fundamental Physics

Shared Data and Algorithms for Deep Learning

- A. Shared Data:
 - Collection of various open datasets
 - Easy-to-use: Import data with one line of Python code
- B. <u>Shared Algorithms:</u>
 - Provide a expert-tuned reference model for each dataset
 - Implements some basic dataset specific preprocessing
 - Includes overarching ML models performing well on all datasets
 - Showing that in particular a Graph Networks can be applied to almost any data structure

Available via <u>pd4ml</u> packa<u>g</u>e

The pd4ml Python Package

<u>Physics Data for Machine Learning (pd4ml) library:</u>

- Easy-to-use library to work with all the provided datasets
- Data are packed in a convenient format (as numpy arrays) \bullet
- Contains implementation of ML models and preprocessing routines

from pd4ml **import** TopTagging

load training and testing set

Available via <u>pd4ml</u> package

```
X_train, y_train = TopTagging.load('train', path = '../datasets')
X_test, y_test = TopTagging.load('test', path = '../datasets')
```


Shared Data (current status)

Five datasets currently available (looking forward to further contributions):

	Origin	Task	Examples	Structure	Dimension	Referer mode
Top Tagging Landscape	Simulation	Classification	2M	Four vectors	200 particles, 4 features/particle	GraphN
Smart Backgrounds	Simulation	Classification	280k	Decay Graph	100 particles, 9 features/particle	GraphN
Spinodal or Not	Simulation	Classification	29k	2D Histogram	20x20 histogram of pion spectra	CNN
EoS	Simulation	Classification	200k	2D Histogram	24x24 histogram of pion spectra	CNN
Air Showers	Simulation	Regression	100k	81 1D Traces	81 stations, 80 signals + timing	RNN

Shared Algorithms (current status)

- Each datasets comes with a Reference model as an experttuned ML architecture
- Additionally we provide two shared ML models working on all datasets:
 - 1. Fully Connected Network (standard Neural Network, 12 layers à 256 nodes, Sigmoid or Linear output node)
 - 2. Graph Convolution Network (using an adjacency matrix _____ calculated from data to take spatial relations into account)
- Dataset-specific preprocessing is included (& adjacency matrix creation)

Input
(12 times) Fully connected lay 256, ReLU
Fully connected layer 1, Sigmoid/Linear
x1 x2 xN Ad PP PP PP PP Block Block Block
Graph Convolution Block Dropout = 0.2
Fully Connected Block Dropout = 0.2
Fully Connected Block Dropout = 0.1 Fully connected layer 1, Sigmoid/Linear

Performance comparison of shared models

Potential CALICE contribution

10.09.2021

CALICE open data?

- CALICE has many exciting datasets & an increasing amount of data science contributions
- I.e. experimental testbeam data (2018: AHCAL technological prototype at SPS)
 - Quite unusual in the space of data science: Labeled 'real' data
 - Attractive dataset for data scientists
- Low level calorimeter event information could be made openly available
 - AHCAL hit information: hit_X, hit_Y, hit_Z, energy, time
 - (Potentially calculated high-level event variables as well)
- Potential ML tasks: Regression (energy reconstruction)

AHCAL technological prototype @ SPS in 2018

Open Data on Zenodo

- Open science platform for research data hosted by CERN since 2013
- Used by scientists of many domains
- Can include multiple files for one datase (i.e. root files and numpy files) and allows for version control
- Citable via Digital Object Identifier (DOI)
- Independent of our pd4ml library (but pd4ml can download from Zenodo)

		🔒 zenodo.or	g	
zenodo	Search	Q Upload Commu	unities	
May 14, 2020			Dataset Open Access	
High Granula Images	arity Electror	magnetic Show	Ver	80 views See more of
This is a limited subset of the da	ata used for training in arXiv:20	005.05334. The network architectures	s and instructions to	
Electromagnetic calorimeter for 2.1 mm followed by 10 layers of 30×30×30 cells. Each cell in this The file has the following structu	the ILD consists of 30 active s 4.2 mm thickness respectively grid corresponds to exactly or ure:	ilicon layers in a tungsten absorber st v. We project the sensors onto a recta he sensor, resulting in total of 27k cha	tack with 20 layers of ingular grid of nnels.	Indexed in Open
 Group named 30x30 energy Date of the layers Control of the layers Control of the layers 	ataset {1000, 1} ataset {1000, 30, 30, 30}			
The energy specifies the true end (MeV) in 30 layers of the calorim	ergy of the incoming photons i neter in an image data format.	n units of GeV, where <i>layers</i> represent This file contains approximately 24.00	t the energy deposited 00 showers.	Publication date: May 14, 2020
You may want to generate this	s data yourself: https://github.o	com/FLC-QU-hep/getting_high		DOI 10.5281/zenodo.3826 Keyword(s):
Files (5.1 GB)			~	Generative Models, Deep Learn High Granularity, GAN, WGAN,
Name		Size		Creative Commons Att
photons.hdf5		5.1 GB	La Download	
md5:7eddc43dffb7311dce4c61f164	14e4cae 😧			Versions

https://doi.org/10.5281/zenodo.3826103

Shared Data and Algorithms for Deep Learning **CALICE** Collaboration Meeting

_og in	
11 ≰ downloads s	
IRE	
alorimeter, Simulation,	
on 4.0 International	
May 14, 2020	

11

CALICE open data for PD4ML

A CALICE contribution could include:

- Experimental AHCAL test beam runs from the June 2018 at SPS
- 10-80 GeV pion showers in AHCAL
 - With event selection & calibration from corresponding publication
- Showers in the form of low-level hit information, labels with beam energy
 - Upload to Zenodo as root files and as numpy arrays (for the pd4ml Python package)
- Reference ML model performing an exemplary task (i.e. energy reconstruction)

Conclusions

- The pd4ml package allows easy loading of fundamental physics datasets
- Provides space for model comparisons and cross-disciplinary benchmarking
- Includes shared ML models well performing over multiple datasets
- Looking forward to expanding the pd4ml library further
- -> CALICE contribution possible via open data on Zenodo

arXiv:2107.00656

<u>GitHub: pd4ml</u>

CALICE Collaboration Meeting Shared Data and Algorithms for Deep Learning

Import your datasets and/or do your experiments with the pd4ml git repository

Bonus

10.09.2021

The Datasets

10.09.2021

The Datasets: Top Tagging

- 14 TeV, hadronic tops for signal, QCD dijets background, Delphes ATLAS detector card with Pythia
- The leading 200 jet constituent 4-momenta are stored, with zero-padding for jets with fewer than 200
- <u>Reference model:</u> ParticleNet (<u>1902.08570</u>)
 - Graph Neural Network acting on the unordered set of jet constituents

Shared Data and Algorithms for Deep Learning **CALICE** Collaboration Meeting

The Datasets: smartBKG (Belle II)

- Simulated events with generator level information
- Event passes (1) or fails (0) a selection that was applied after detector simulation and reconstruction
- Total of 400k events, max. 100 particles per event characterised by 9 features:
 - Production time, E, x, y, z px, py, pz, PID
- Indices of mother particles are used to create adjacency matrix network input
- <u>Reference model:</u> Graph Convolutional Network

106

10

106

energy

The Datasets: Spinodal

- Classify the nature of QCD phase transitions in heavy ion collisions at the Compressed Baryonic Matter (CBM) experiment
- Dataset is composed of 29,000 2D histograms describing pion momenta
- Reference model: Convolutional Neural Network (1906.06562)

15

10

The Datasets: EoS

- Classify the QCD transition nature in heavy-ion collisions from the final state pion spectra
- 2 equation of state: cross-over EOSL or 1st order EOSQ
- 180,000 2D histograms of pion spectra
- Data simulated with different parameters for the test set
- **Reference Model:** Convolutional Neural Network (<u>1910.11530</u>)

10 -

5

10

15

20

Pion spectra: background

Pion spectra: signal

10

. . .

15

20

The Datasets: Cosmic-ray induced Air Showers

- Regression task: predict the shower maximum
- 100,000 events (airshowers)
 - 81 ground detector stations disposed in a 9x9 grid
 - 80 measured signal bins (forming one signal trace per station)
 - 1 starting time of the signal trace (arrival time of first particles at each station) lacksquare
- <u>Reference model:</u> Residual Neural Network

10.09.2021

Erik Buhmann

Shared Data and Algorithms for Deep Learning **CALICE** Collaboration Meeting

10.09.2021

Erik Buhmann Shared Data and Algorithms for Deep Learning **CALICE** Collaboration Meeting

The Models

The Fully Connected Network

- TensorFlow implementation:
 - Number of inputs changes depending on the dataset
 - Dense layers with 256 nodes each
 - Output layer changes depending on the task:
 - Batch size: 256
 - Loss: BCE or MSE
 - Epochs: 300
 - Learning rate 0.001 with Adam optimizer
- Keras callbacks:
 - Reduce on plateau with patience 8 epochs
 - Early stopping with patience 15 epochs

The Graph Network: adjacency matrices

Creating adjacency matrices from the datasets:

- TopTagging (jet constituents): kNN clustering of particles per events (k = 7)
- Spinodal & EOS (images):
 8-connected neighboring pixels
- Belle (jet constituents): Matrix with event history via mother & daughter particles (same as Reference Model)
- 4. Airshowers (signal bins & timing of 81 ground stations):
 8-connected neighboring stations (assumes rectangular 9x9 grid)

r & daughter el) 91 around stations

1	2	3	
4		5	
6	7	8	

The Graph Network

- Three blocks composing the GraphNet:
 - Pre-Processing Block: dense layer followed by a PReLU layer
 - Fully Connected Block: a fully connected layer followed by a batchNorm layer, PReLU and Dropout
 - Graph Convolution Block: A graph convolutional layer followed by a batchNorm layer, PReLU and Dropout

Shared Data and Algorithms for Deep Learning **CALICE** Collaboration Meeting

The Graph Network

- TensorFlow implementation:
 - Dense layers with 256 nodes each
 - Graph Convolution layers (<u>1609.02907</u>) with 256 nodes each
 - GlobalAvgPool1D
 - Output layer changes depending on the task
 - Batch size: 32
 - Loss: BCE or MSE
 - Epochs: 400
 - Learning rate 0.0001 with Adam optimizer
- Keras callbacks:
 - Reduce on plateau with patience 8 epochs
 - Early stopping with patience 50 epochs

CALICE Collaboration Meeting Shared Data and Algorithms for Deep Learning

Performance comparison

	Top Tagging		Spinodal		EOS		smartBKG		Airshower	
	ACC	AUC	ACC	AUC	ACC	AUC	ACC	AUC	MSE	Resolut
Ref. Model	0.939 ± 0	0.985 ± 0	0.873 ± 0.004	0.925 ± 0.005	0.691 ± 0.005	0.788 ± 0.005	0.823 ± 0.001	0.906 ± 0.009	1000 ± 52	31.32 0.75
Graph Model	0.935 ± 0.001	0.983 ± 0	0.854 ± 0.004	0.916 ± 0.005	0.687 ± 0.005	0.766 ± 0.005	0.824 ± 0.001	0.903 ± 0	1185 ± 26	34.12 0.47
FCN Model	0.907 ± 0.001	0.968 ± 0.001	0.824 ± 0.001	0.883 ± 0.001	0.605 ± 0.019	0.739 ± 0.008	0.736 ± 0.001	0.81 ± 0.001	1816 ± 41	42.6 : 0.47

Shared Data (currently status)

Five datasets currently available (looking forward to further contributions):

- 1. "Top Tagging at the LHC": <u>1902.09914</u>
 - 1. Jet constituents (4-vectors) for Top vs QCD jet tagging; Reference: ParticleNet (Graph Network)
- 2. "Spinodal or not?" : <u>1906.06562</u>
 - 1. Images (2d histograms) of pion spectra; Reference: CNN
- 3. "EOSL or EOSQ" : <u>1910.11530</u>
 - 1. Images (2d histograms) of pion spectra; Reference: CNN [test set differs from training set]
- 4. SmartBKG dataset (Belle II generated events passing downstream selection): link
 - 1. Decay graph of particles, Reference: GCN
- 5. Cosmic Airshowers: <u>publication</u>
 - 1. 81 1d traces (signals and timing) of air showers for shower maximum reconstruction, Reference: RNN

Shared Data and Algorithms for Deep Learning **CALICE** Collaboration Meeting

