CALICE Meeting, Sep. 10, 2021

Analysis of LGAD test beam at Tohoku in February 2021

SHUSAKU TSUMURA (KYUSHU UNIVERSITY) T.SUEHARA, M.KUHARA, K.KAWAGOE, T.ONOE, T.YOSHIOKA (KYUSHU UNIVERSITY) Y.KATO (THE UNIVERSITY OF TOKYO)

Particle Identification using ToF

- Particle Identification by dE/dx and momentum: Region where particle identification becomes ineffecient
- Using the ToF (Time of Flight): Improvement of separation power (~5 GeV)

$$\begin{aligned} v &= d/\text{ToF}, \, \beta = v/c = m/E = p/\sqrt{m^2 + p^2} \\ \Delta m^2 &= 2(m^2 + p^2) \frac{\sigma(ToF)}{ToF} \sim 2p^2 \sigma \frac{ToF}{ToF} < \frac{m_K^2 - n}{3} \\ \rightarrow p_{max} < \sqrt{\frac{m_K^2 - m_\pi^2}{6 \cdot \sigma(ToF)} \cdot \frac{d}{c}} \end{aligned}$$

Lever Arm of 3.0m assumed

Identified Particle	π/K			K / proton		
Time resolution[ps]	100	50	10	100	50	10
Momentum identified by 3σ [GeV/c]	1.94	2.74	6.12	3.26	4.60	10.29

LGAD silicon sensor

Test beam at ELPH, Tohoku University

► The positron beams

Momentum : ~ 770MeV Rate : 1kHz with spot of a few cm Quasi-CW

CALICE Meeting, Sep. 10, 2021

Electronics

SKIROC2-CMS Testboard

Skiroc2-CMS

- Skiroc : Compacted readout circuit
- \succ Preamplifier \rightarrow first stage amplification
- $\succ \text{Fast Shaper} \rightarrow \text{Measurement of TOT/TOA}$
- > Slow Shaper \rightarrow Digital information of ADC

How to measure timing of hits

- TOA (Time of Arrival) : Time when the signal exceeds the threshold
 → The time difference between trigger and clock signal
- Charge begins to be accumulated at the time of the trigger. \rightarrow The amount of charge represent TOA.
- ► Time to rising edge : TOA rise
- ► Time to falling edge : TOA fall

CALICE Meeting, Sep 10, 2021

View of the test beam data

To lower threshold, necessity to reduce the noise

ADC distribution of test beam data

► ADC distribution

No strong correlation between 2 channels \rightarrow Signal-like distribution

Analysis of data

Timewalk correction

Timewalk is the time shift depending on signal height.

- ▶ Higher signal : Earlier arrival Lower signal : Later arrival
 → Correction using signal height
- Using test board and pulse generator, the measurement of timewalk against the amount of charge was conducted.

Measurement of Timewalk

- 1. Calibration of TOA : injection of 21fC/ 30fC/ 39fC; Time diff : Ons ~ 20ns
- Sending pseudo-signals with different pulse height to the test board Setting : Trigger threshold 190 (corresponding to ~ 14fC) Time diff : Ons, 10ns

The results of Time walk measurement

- ◆ TOArise vs Time
 - → The TOA between the two curves is inferred from the left curve (This curve is quadratic function)

TOArise vs. Charge The timewalk is well fitted by exponential function : (charge > 20 fC)

Blue: 30fC

Green: 21fC

 $f(x) = a \exp(bx) + c$ (a, b, c : parameters)

The shape of the curve have to be considered to be non-linearlity

These two information was used to time walk correction

Results of time walk correction

 Without time walk correction (ADC > 900, Ch36 vs Ch39)

With time walk correction

TOA_correction, ADC>900

Results of time walk correction

Ch36 vs Ch39

Results of time walk correction

Summary and Plans

- We have conducted beam test at ELPH in February this year and the analysis of the data was conducted.
- By applying the time walk correction, the time resolution of LGAD in this test beam can be estimated as about 200 ps

Plan

- Necessity : Reduction of the noise which is caused by HV Use of the board which has much less jitter
- We will conduct the test beam again at next month and try to use the new discrete amprefied board.

CALICE Meeting, Sep. 10, 2021

Results of time walk correction (Timewalk effect is small)

| ADC(ch36)- ADC(ch39) | <50

• Without timewalk correction (ADC Diff <50)

• With timewalk correction

CALICE Meeting, Sep. 10, 2021

Jitter measurement

Jitter vs Charge

Deviation between channels

Ch 36 vs Ch 39

Ch 36 vs Ch 42

Ch 39 vs Ch 42

CALICE Meeting, Sep. 10, 2021