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Purpose

Sempe
Rien n'est simple

Particle showers produce very large amounts of secondary particles. e
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Would it be possible to use these in principle “minimum ionizing
particles”(MIPs) to establish an in situ calibration of the detector?

In the ideal case, all detected particle tracks or segments would

behave the same way, independent of their type or energy. This is Sempé
. Tout se complique
needed because the mix in a real detector would be unknown. v

In practice this cannot be that simple, there might be dependencies,
there will be corrections due to angles and other systematics ...

But how far can one go? A “simple” robust method is proposed here.




Event Selection

Data from June 2018, taken at the CERN SPS, with e,,u beams from 10 to 200 GeV

e.g. pions: reject muon contamination
with a simple cut on the number of hits
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Shower Hits: Clusters




Finding Track Segments

The method uses connectivity properties and the inertial tensor.

with hit
Connectivity: how many neighbors’does a calorimeter cell have in 3D (from 0 to 26)?

1) Reject hits with connectivity < 1: outliers or isolated hits
2) Reject hits with connectivity > 8: shower core(s) [the start of the shower comes for free]
3) Refresh connectivity 3D map

4) Minimum chosen for segment candidates from the remaining clusters: 4 hits.
(<4 is deemed too few to identify reliably and >4 will reduce the statistics) [systematic]

5) Primary track of the event is specially tagged, since most likely not to be a MIP



Shower Objects: Primary, Core, Tracks,
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Shower Objects: Primary, Tracks
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Track Segment Ildentification

The surviving clusters are a list of hits, each a 5D entity (t,x,y,z,E). [time not used yet]
Clusters are characterized with the inertial tensor:

N (V¥ -y -z
I = Z —Z;Y; CL? o Z? —UYiZi [weights E; are folded in]
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which can be diagonalized:
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yielding the longest axis via e;. A loose cut of e,/(e,?+e,%) < 0.1 enforces straightness.



Number of Track Segments per Event (averages)

Beam Energy
10 GeV
20 GeV
30 GeV
40 GeV

50 GeV
60 GeV
/70 GeV
30 GeV
90 GeV
100 GeV
120 GeV
160 GeV
200 GeV

Muons

~ 1 - 2 6 (broken or

double)

Electrons
1.04 £0.22
1.17 £0.43
1.06 +0.30
1.05 £+ 0.25

1.10 = 0.39
1.07 £0.31
1.10 = 0.39
1.17 £ 0.51
1.21 £ 0.56
1.28 + 0.66

Pions
1.50+0.72
1.72 =0.90
1.77 = 0.95
1.89 +1.04

1.91+1.07

2.00x1.14

2.01 £1.16

2.03t1.18
2.07+1.20

most data sets
~ 200 kEvents
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MC Comparisons for #Segments found

Normalization Data/MC taken from the number of found segments. Selected plots:
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Geometrical Angular Dependence

Path length in tile is a function of the polar angle O:
Lo Fo

L@ — V so that one expects: E9 — U
cost cost

1 2

Option 1: assume this is exact (risky) and make the correction

1
Option 2: (chosen) fit the data with: Ejy &~ E.(1 - 26’2 I 2546’4 + ...)

See how well the dependence holds: Ejy ~ F. (1 ch* ) isc=h?

The fitted £y value per layer becomes the “calibration reference number”
(in MIP units)
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Angular Dependence for Electrons
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0 > 84 ° (cell geometry)

0 =0° (observed residual primary contamination)

Average Fno results 10-100 GeV:

Data: 2.724 £0.0/79 MIP

MC(QGSP): 2.647 £0.077 MIP
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Angular Dependence for Pions

not OK with %2 1?
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Summary of F.Results
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Open Questions & Systematics

All results are preliminary. Open questions (to be investigated) remain for segments:

1) Muon rate discrepancy Data/MC: attributed to double events or broken clusters.

2) Angle O dependence for pions: the “c” factor is ~5 times too large, which however
does not affect the extrapolated values (same for Data and MC).

3) Muon numbers lower: lack of time to be studied but offered for comparison.

4) Values are 0=0 are systematically lower: related to muon beam contamination?

The following systematic errors for Eyo-have been estimated: (1) (4) and beam energy

dependence, yielding:

Electrons: 2.73 £0.08 + 0.09 MIP
Pions: 2.50+0.13+0.05 MIP

- some discrepancy electrons-pions
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DHCAL

A very similar study has been performed with DHCAL and presented at the 2018 CALICE
Collaboration Meeting in Mainz: (see extra slide for other previous CALICE studies)
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Summary and Outlook

The possibility of using secondary track segments for in situ
calibration in a detector has been investigated with AHCAL.

The potential is there but some effect have still to be understood
and the statistics required for absolute single channel calibration
may be overwhelming. Looking at single cells is the next step.

Still, given a stable and reliable trigger in a detector, a constant
self-monitoring of the data relative calibration at the few-% level
should be attainable.
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CALICE and
Track Segments

Track Segment Calibrations

AHCAL

Track segments in hadronic showers in a highly granular scintillator-steel hadron
calorimeter (CALICE)
arXiv:1305.7027 [physics.ins-det] 29 Jul 2013

Calibration Studies and the Investigation of Track Segments within Showers with an
Imaging Hadronic Calorimeter (Shaojun Lu for CALICE)

arXiv:0910.3820 [physics.ins-det] 20 Oct 2009

use most probable value of energy loss for high quality tracks

Track Segments in Hadronic Showers: Calibration Possibilities for a Highly Granular HCAL
(Frank Simon for CALICE)

arXiv:0902.1879 [physics.ins-det] 11 Feb 2009

cell by cell calibration foreseen, but high statistics required

SDHCAL

Tracking within Hadronic Showers in the CALICE SDHCAL prototype using a Hough
Transform Technique (CALICE)

arXiv:1702.08082 [physics.ins-det] 8 May 2017

Hough Transform adapted to shower properties

DHCAL

The CALICE digital hadron calorimeter: calibration and response to pions and positrons
(Burak Bilki for CALICE)
CALOR 2014: Journal of Physics: Conference Series 587 (2015) 012038

method described in paper, seeded by 4-layer searches

F.Corriveau IPP/McGilf Umiversity —  DHCAL Calibration Status Report - 2018.03.08 - CALICE Week Mainz
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