Particle identification with the time of flight at the ILD

CALICE Collaboration Meeting 10 September 2021, IJCLab

Bohdan Dudar bohdan.dudar@desy.de

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

Before we start... It is <u>inspiring</u> to see many talks on timing!

Update on LGAD-APD tests	Taikan Suehara 🕜
Auditorium Pierre Lehmann, Building 200, IJCLab	16:25 - 16:45
Measurement of the time resolution of the Klaus ASIC	Konrad Briggl 🥝
Auditorium Pierre Lehmann, Building 200, IJCLab	11:40 - 12:00
SDHCAL Timing	Qiu-Ping SHEN
Auditorium Pierre Lehmann, Building 200, IJCLab	15:25 - 15:45
Time resolution measurements with AHCAL scintillator tiles - test beam results	Lorenz Emberger 🖉
Auditorium Pierre Lehmann, Building 200, IJCLab	16:50 - 17:10
Time resolution measurements with AHCAL scintillator tiles - simulations & laser measurements	Fabian Hummer 🥝
Auditorium Pierre Lehmann, Building 200, IJCLab	17:10 - 17:35

Analysis of LGAD test beam at Tohoku in February 2021	Shusaku Tsumura
Auditorium Pierre Lehmann, Building 200, IJCLab	09:00 - 09:20

DESY. | TOF for parcitle ID at ILD | Bohdan Dudar, 10.09.2021

Two main questions of this talk:

1)How do we use time information for particle ID?

2)How does time resolution affects particle ID?

The same subject as in the talk by Mami Kuhara at the CALICE Collaboration Meeting in March 2021

Basic principle of the particle identification with TOF

We have a track. How to identify what particle it is?

Let's use formula for the relativistic momentum to find out the mass of the particle

$$m = \frac{p}{\beta}\sqrt{1-\beta^2}$$

DESY. | TOF for parcitle ID at ILD | Bohdan Dudar, 10.09.2021

Basic principle of the particle identification with TOF

We have a track. How to identify what particle it is?

Let's use formula for the relativistic momentum to find out the mass of the particle

$$m = \frac{p}{\beta}\sqrt{1-\beta^2}$$

$$p = e \frac{|B_z|}{|\Omega|} \sqrt{1 + \tan^2 \lambda} \qquad \qquad \beta = \frac{\ell_{\text{track}}}{c \cdot \text{TOF}}$$

$$\ell_{\text{track}} = \sum_{i=0}^{n} \ell_i = \sqrt{\left(\frac{\varphi_{i+1} - \varphi_i}{\Omega}\right)^2 + (z_{i+1} - z_i)^2}$$

TOF = measure at the ECal / SET

DESY. | TOF for parcitle ID at ILD | Bohdan Dudar, 10.09.2021

Recent developments on the track length

Recently we **significantly improved** track length estimator and pID in general:

- Fixed φ coordinate flip bug that caused wrong estimation of the track length
- Using track states at **all TPC hits** now! Allows to measure the track length for curly tracks in the endcap!
- Use harmonic mean momentum for mass reconstruction as proposed by Winfried A. Mitaroff in his paper

Full and detailed description of all technicalities in my recent talk at the ILD S&A meeting

something remains unclear? Don't hesitate to contact via email :)

TOF estimators

For further plots I will use "TOF closest" estimator

- Straightforward and simple logic. No shower or algorithmic effects no additional errors or biases
- Using single hit we get: $\Delta TOF = \Delta t_{hit}$ The "worst" case scenario benchmark which we can try to improve with any algorithm described above

Mass bias

Mass bias

Mathematical explanation

 $\left|\frac{t^2c^2}{l_{trk}^2} - 1\right|$

$$p(t) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2}\frac{(t-t_0)^2}{\sigma^2}} \qquad m(t) = \frac{p}{\beta}\sqrt{1-\beta^2} = p_{\text{V}}$$

Left formula:

p(t) – probability distribution of measured time

t₀-true TOF

 $\sigma-\text{TOF}$ resolution

Right formula:

m(t) – relation between mass and time

p - true momentum

c – speed of light

I_{trk} – track length

Given:

t – random variable with p(t) distribution

m - random variable with m=m(t) relation

Find:

 $p(m) = \left|\frac{dt}{dm}\right| p(t(m))$

We can analytically calculate mass distribution based on the resolution

Mathematical details

$$t = \frac{l_{trk}}{pc} \sqrt{m^2 + p^2}$$
$$\frac{dt}{dm} = \frac{l_{trk}}{pc} \frac{m}{\sqrt{m^2 + p^2}}$$
$$p(m) = \frac{l_{trk}}{pc} \frac{m}{\sqrt{m^2 + p^2}} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(\frac{l_{trk}}{pc}\sqrt{m^2 + p^2} - t_0)^2}{2\sigma^2}}$$

Mass probability distribution not a pure Gaussian

Bohdan Dudar | Development of TOF pID algorithm

02 March 2021

Example mass distributions

Let's consider:

m = 139.57018(35) MeV (π^{\pm}) p = 1 GeV I_{trk} = 2 m t_0 (m, p, I_{trk}) = 6.7359462 ns

```
\sigma = 1, 10, 30, 50, 100, 300 ps
```


Mathematical functions repeat observed bias from MC simulations

Extraction of separation power (0 ps)

DESY. | TOF for parcitle ID at ILD | Bohdan Dudar, 10.09.2021

Extraction of separation power (10 ps)

DESY. | TOF for parcitle ID at ILD | Bohdan Dudar, 10.09.2021

Extraction of separation power (30 ps)

DESY. | TOF for parcitle ID at ILD | Bohdan Dudar, 10.09.2021

Extraction of separation power (50 ps)

DESY. | TOF for parcitle ID at ILD | Bohdan Dudar, 10.09.2021

Extraction of separation power (100 ps)

DESY. | TOF for parcitle ID at ILD | Bohdan Dudar, 10.09.2021

Comparison of sep. power

barrel / tof_closest / sep power comparison

Confusion matrix (0 – 15 GeV mom range)

barrel / tof_closest / 0 ps

Confusion matrix (0 – 15 GeV mom range) barrel / tof_closest / 10 ps

Confusion matrix (0 – 15 GeV mom range) barrel / tof_closest / 30 ps

Confusion matrix (0 – 15 GeV mom range)

barrel / tof_closest / 50 ps

Confusion matrix (0 – 15 GeV mom range)

barrel / tof_closest / 100 ps

					<mark>1</mark>
p _{reco}	0.068	0.139	0.689	0.072	0.9 0.8 0.7
K^{\pm}_{reco}	0.102	0.379	0.097	0.094 -	0.6 0.5 0.4
$\pi^{\pm}_{ m reco}$	0.830	0.482	0.214	0.834	0.3 0.2 0.1
	$\pi^{\pm}_{ ext{true}}$	K^{\pm}_{true}	P _{true}	other	- 0

barrel / tof_closest / efficiency for Pions

barrel / tof_closest / efficiency for Kaons

Efficiency

barrel / tof_closest / Efficiency for protons

Efficiency

barrel / tof_closest / mis-id rate for Pions

barrel / tof_closest / mis-id rate for Kaons

barrel / tof_closest / mis-id rate for protons

Conclusions

- Track length estimation has been tested and improved compared to the previous version Now we have more confidence for particle ID in the endcaps
- Current TOFestimators processor in the iLCSoft is under major revision and soon will be updated probably breaking backwards compatibility.
 New version will include the latest developments presented here and beyond
- Eliminating major negative effects from the track length estimator shifts limiting factor for particle ID on time resolution

Future plans for pID

- Use combined information (dE/dx + ToF) for particle identification (very promising coverage of a broad momentum range with high efficiency)
- Study timing more in depth, e.g.: digitization, different time estimators, etc. effects on pID
- Show how relevant timing for actual physics analysis (affects mostly everything with b/c quarks)

MC samples		Selection	
Energy	250 GeV	N clusters	1
Process	$Z \rightarrow 2f \rightarrow hadronic$	N tracks	1
Detector	ILD_I5_01_v02	(tsAtECal – closestHit).r()	< 4000 m
ILCSoft	02-02-02	N Ecal hits	>0

Distinction between barrel/endcap in this analysis is made with the cut on trackState position at the ECal:

|z| < 2385 mm – barrel |z| > 2385 mm – endcap

Back up

Particle abundance in the analyzed MC samples:

Back up

Binning to extract exactly the same separation plots

// 30 bins over 0 - 15 GeV momentum range // 200 bins from -0.1 - 1.3 GeV mass range Histo2D binning = (30, 0., 15., 200, -0.1, 1.3)

Fit details:

// fit each particle band selecting it with MC PDG value
// set starting and limit fit parameters based on max_bin
// max_bin - x position (mass) of the bin with maximum entries in the current momentum slice
// if slice has less than 100 entries, don't fit and don't add the point to the final graphs

Sep.Power =
$$\frac{|\mu_1 - \mu_2|}{\sqrt{0.5(\sigma_1^2 + \sigma_2^2)}}$$

BACK UP: Confusion matrix information from ILD talk:

Simple algorithm to assign particle types:

 Get the difference between m_{reco} and m(p) graph mean in sigma units for each particle type assumption.

$$d_{\pi,K,p} = \frac{|m_{\text{reco}} - \mu_{\pi,K,p}(p_{\text{reco}})|}{\sigma_{\pi,K,p}(p_{\text{reco}})}$$

- 2) Assign particle type which has minimal distance
- 3) If β_{reco} >1 and we can't calculate m_{reco} we assume it is a π^{\pm} .

momentum is limited to $0-15\;\mbox{GeV}$

This is a <u>very first</u> raw estimate Numbers are dependent on the implementation:

- Binning of the initial histogram
- Fit success / constraints, etc.
- Momentum range

Both methods show similar performance in the barrel. With novel approach being slightly better