Cosmic-ray test of the Sci-W ECAL Technological Prototype

Yunlong Zhang

State Key Laboratory of Particle Detection and Electronics, China

University of Science and Technology of China

On behalf of CEPC Calorimeter working group

CALICE Collaboration Meeting at IJCLab/Orsay, 8-10 September, 2021

- Brief review of Sci-W ECAL
- CEPC Sci-W ECAL Cosmic Ray Test
 - Some key parameters calibration
 - ➢Pedestal, low/high gain ratio, MIPs...
 - Position resolution study
 - ➤Time measurement
- ➢ Summary

Sci-W ECAL of CEPC

- The calorimeter prototype has 16 super-layers
 - > Plastic scintillator strip, 10 um and 15 um pixel SiPM, tungsten plate
- The adjacent layers are arranged in orthogonal to ensure the 5 mm granularity
- > The total radiation length is about 23.4 X_0

What could we get from Cosmic Test

- Study the performance of calorimeter in long term, and some analysis methods can also be tested with these data
- Calibrate some important parameters of calorimeter, like the pedestal, low gain/high gain ratio, electronics linearity, energy scale and so on
- Also include the engineering parameters, like temperature, voltage, current..
- Long term cosmic ray test: ~100 DAYs
 - Coincidence trigger of Layer1 & Layer29
 - Event rate : ~ 16 per minute
 - ~1.5 million cosmic ray events collected

Temperature

- The temperature is between 14 and 26 degrees, with an average of 20 degree
- There are slight differences in different locations in the same layer
- The temperature difference between different layers is also very small

pedestal

- The pedestal distribution could be get from "hittag=0" channel
- The pedestal width of 10 um and 15 um pixel SiPM are about 3-5 ADC counts

pedestal

- > The pedestal width of different chips is a little different
- > The pedestal width of the same chip is more uniform

Pedestal width of each channel

Pedestal stability

Compared with the first day, the change of pedestal position in one month and three months is very small, 0.3 and 0.2 ADC counts respectively

High gain and low gain ratio

- SPIROC2E chip has two different gain channels
- The coefficient of high and low gain is very important to realize the conversion of high and low gain channels
- Cosmic ray test could be used to calibrate the ratio

The ratio could also be calibrated by LED test, and the details could be seen in Naoki's talk

MIPs spectra

- In order to reconstruct the total energy deposition in calorimeter of incident event, we should know the deposition in each SD element
- MPV value of MIPs is the reference for SD energy reconstruction
- Landau convolution Gaussian function is used to fit
 - Landau describes the energy fluctuation
 - Gauss describes the fluorescence process, electronic gain and so on

- Combined with the SiPM single photon electronic peak obtained from LED test, the light yield of each unit can be obtained
- The light yields using 10um and 15um SiPM readout units are about 10 pe/MIP and 20 pe/MIP, respectively

Track finding and fitting

➤A preliminary algorithm performed

- Find and fit the precise cosmic-ray track
- Distinguish real hit cells and noise cells

Process	Selection	Efficiency
preSelection	$TotalHitLayer \ge 22$	92%
	TotalHitStrips ≤ 64	99.6%
	$ADC \ge 5\sigma$	99%
Iteration Fitting	All Hits	
	$Pos - tracking \leq (47.5, 5, 7.5)$	
	Nearest point in one layer	
Track Selection	$ Intercept \leqslant 114, \varphi \leqslant 0.7$	98.2%
	$\sigma^2 \leqslant 9.6$	98.3%
	$TotalHitLayer \ge 6$	99.8%
Alignment	Position-track fitting residual	

Position resolution

- Position resolution better than 2 mm
 - Strongly affected by large angle scattering
 - The RMS of residual distribution is referred as the position resolution
 - The settings of simulation should fine tuning

Based on this position resolution, we can study the fluorescence collection uniformity of scintillation unit

Beam Test data reconstruction

- Through the cosmic test, we can get the pedestal, energy scale and highlow gain conversion coefficient of each channel
- In the next step, we will carry out energy reconstruction on the beam test data of last year in IHEP

E3 beam line in IHEP

- Time response of SPIROC2E
 - SPIROC2E could give time information using an Integral TDC
 - two ramps: positive and negative
 - The linearity of TDC could be

SPIROC2E chip

- Cosmic Ray could be used to calibrate the "TDC offset" of each chip or channel
 - Select one chip on each of the two EBUs
 - Calculate the difference of TDC channels measured by the two chips
 - The TDC counts to seconds convert coefficients are from pulse generator calibration

- Here is the time measurement relationship of all chips on the two EBUs
- The time resolution after offset correction is shown
- Both the positive and negative ramp, the time resolutions are about 11 ns after correction

20

Time resolution

2021/9/8

40

delta TDCcali [ns]

18

-20

Summary and outlook

- The calorimeter prototype based on Sci-W (and SPIROC2E chip) has been developed
 - 32 sampling layers, great than 6720×2 channels
 - The granularity is 5 mm \times 5 mm
- A long-term cosmic ray test have been carried out
 - The results show that the performance of the prototype is good
 - the design functions can be realized
 - The noise, MIPs amplitude, temperature...
- Next step, we hope to reconstruct the beam test data of last year in IHEP, and prepare for a new beam test in near future
 – Desy, CERN, IHEP

Summary and outlook

- The calorimeter prototype based on Sci-W (and SPIROC2E chip) has been developed
 - 32 sampling layers, great than 6720×2 channels
 - The granularity is 5 mmimes5 mm
- A long-term cosmic ray test have been carried out
 - The results show that the performance of the prototype is good
 - the design functions can be realized
 - The noise, MIPs amplitude, temperature...
- Next step, we hope to reconstruct the beam test data of last year in IHEP, and prepare for a new beam test in near future
 - Desy, CERN, IHEP THANKS

backup

ECAL trigger

Validation Mode

- Channel schematic of SPIROC2E chip
 - High gain
 - ➤ Low gain

Time measurement

SPIROC2E chip

Time calibration

Positive slope ramp

TDC Channel vs. delay time

Time resolution at 1000 ns

Time resolution of TDC

2021/9/8

Cosmic Ray could be uesd to calibrate the "offset"

Beam Test in IHEP

2021/9/8

27