

LED-based calibration for ScW-ECAL prototype

Naoki Tsuji^a, W. Ootani^b, R. Masuda^a, T Murata^a, T. Mori^b, L. Liu^a, T. Takeshita^c, Y. Tamaya^c, R. Shirai^c, Y. Niu^{de}, Y. Zhang^{de}, J. Liu^{de}, M. Dong^{df}, Z. Wang^{df}, Y. Liu^{df}

^aThe University of Tokyo ^bICEPP, the University of Tokyo ^cShinshu University ^dState Key Laboratory of Particle Detection and Electronics ^eUniversity of Science and Technology of China ^fInstitute of High Energy Physics

CALICE Collaboration meeting at IJCLab, 8-10 Sep. 2021

Sc-ECAL

- Scintillator Electromagnetic CALorimeter (Sc-ECAL)
 - Technology option of EM calorimeter for ILC and CEPC
- Based on scintillator strips readout by SiPM
 - 5 × 45 × 2 mm³ scintillator strip
- Virtual segmentation : $5 \times 5 \text{ mm}^2$ with strips in x-y configuration
 - # readout channels significantly reduced ($10^8 \rightarrow 10^7$)
 →Low cost
 - Retaining performance comparable to real 5 × 5 mm² segmentation
- Timing resolution < 1 ns</p>

Technological prototype

Large prototype for Sc-ECAL has been constructed as a joint effort by R&D groups for ILC-ILD and CEPC-ECAL

- Use the same technology as foreseen in the full scale detector
- Evaluate the performance using full layers (32 layers)
- Two detection layers with double SiPM readout developed by UTokyo group have been installed in the prototype
- Two additional layers developed by Shinshu group will also be installed
- Test beam in DESY
 - August 2020 and March 2021 has been postponed
 - Due to COVID-19
 - Possibility of test beam at IHEP is under investigation

LED calibration

LED calibration

- Inter calibration of low gain and high gain for electronics
- SPS gain calibration of SiPMs
- Calibration of cross-talk and after-pulse

System

- Dual-NIMOS controlled LED system
 - Equipped in EBU
 - One LED for each channel
- LED: narrow blue light pulse
- Data taken at different LED intensities

Inter calibration

SPIROC2E has high-gain and low-gain preamplifier

- Inter calibration (charge injection) between high-gain and low-gain is needed
- Data is taken by the mode which records both high-gain and low-gain

Compare ADC counts of high-gain and low-gain at different LED intensities

- Inter-calibration factor can be obtained by the ratio
 - Overlapped (linear fitting) region is only at low LED intensities
 - Due to the saturation of high-gain

Results & comparison

- Inter-calibration factor can be obtained for all channels
- Inter calibration with different methods
 - LED-based: LED scan
 - DAC-based: directly inject the charge from DAC to SPIROC2E
 - Cosmic-ray (CR-based): cosmic-ray test recording both the high-gain and low-gain
- CR-based inter calibration agree with LED-based one, but DAC-based one is larger than them
 - This difference may come from the difference of signal waveforms
- The spread of the CR-based inter calibration is smaller w.r.t. LED-based one
 - Some channels with LED-based don't have enough fitting points
 - due to the narrow overlapped region and the limit of the interval of LED intensities

Gain & CTAP calibration

- Gain (one photoelectron charge) can be used to convert the charge to the number of photoelectron
- LED input the light with a few photoelectrons
 - The separated peaks of 0, 1, 2, … photons can be obtained
 - Gain is defined by the gap of the peaks of 0, 1,
 2, … photons
- Using LED data, the probability of cross-talk (CT) and after-pulse (AP) can be calculated
- They may affect the energy reconstruction and saturation correction
 - OT and AP increase absolute signal size
 - Easy to saturate

CT+AP measurement

- Assume the signal distribution of LED data at low light intensity is Poisson
- Probability for 0 and 1 photon in case of no CT + AP

•
$$P(0) = e^{-\mu}$$

$$\bigcirc P(1) = \mu e^{-\mu}$$

OCT and AP do not affect P(0) but decrease P(1)

•
$$P'(1) = (1 - \chi)\mu e^{-\mu}$$

• The CT+AP probability χ is calculated as • $\chi = 1 - \frac{P(1)}{P(0)logP(0)}$

- Fit 0, 1, 2 photon peaks with multi-gaussian
- Calculate P(0) and P(1) using the fitted gaussian function
 - Integrated gaussian / total entries

Results

- Gain and CTAP probability for all channels
- Reasonable CTAP probability obtained
 - Catalogue values of CT probability is 5% at 10μ m-pitch, 15% at 15μ m-pitch
 - AP probability is usually 5-10%
- Except some tails where calculation failed due to too low or high light intensity

Shower study using cosmic-ray

- Shower search in cosmic-ray events
 - Possibility of performance study using cosmic-ray shower events is being considered
 - Comparison with simulation
- Shower finding algorithm
 - Get the hit position at previous layer
 - Search the hits at focused layer
 - Count the hits within the width of 2 strips around the hit at previous layer

 - $\bigcirc \ge 3$ hits may cause the shower
 - Search the events which consist of linear track and shower
 - Search the ≥3 hits at the continuous 3 layers after the linear region

Results

Some shower-like events can be obtained

- ◎ 630 shower events in 1.75 * 10⁶ cosmic-ray events
- Fully contained shower events are not included due to coincidence trigger with top and bottom layers

Simulation

- Comparison of CR shower events between data and simulation
- Simulation setup
 - Standalone package based on Geant4
 - Version: Geant4-10.04-p02
 - Physics list: QGSP_BERT
 - Sc-ECAL prototype
 - 30 layers
 - Absorber: WCu (85:15) 3.2 mm
 - Cosmic-ray shower library (CRY) used
 - The CRY software library generates correlated cosmic-ray particle

C. Hagmann, D. Lange, D. Wright INIS, Vol 38 No 40 (2007)

Results

- Shower events are searched for with the same algorithm
- Further analysis will be done
 - Accumulate the statistics
 - Further comparison with data and simulation

EventID:1

EventID:3

Summary

- LED-based calibration for Sc-ECAL prototype was done
 - Inter calibration of high-gain and low-gain for electronics
 - Gain and CTAP probability obtained for all channels
 - Some differences between 3 method, because of the difference of signal waveforms and DAQ method
 - Gain and CTAP calibration
 - Gain and CTAP probability obtained for all channels
 - Gain has 2 types due to the difference of the pixel-pitch of SiPMs
 - CTAP probability is reasonable compared to the catalogue value, and can be used for the energy reconstruction and saturation correction
- Shower analysis
 - OR shower study to evaluate the performance of Sc-ECAL
 - Further analysis such as comparison with simulation is on going

Backup

Double SiPM readout

(See 15aSE-8)

Readout by 2 SiPMs at strip ends

Twice longer strip (L=90mm) to keep the number of SiPMs

Possible advantages

- Eliminating noise by taking coincidence
- Higher light yield by summing 2 SiPM readouts
- Even lower light yield for each SiPMs (→less saturation)
- Position reconstruction by charge and/or timing difference between two readouts (→ reduce ghost hits)

Two detection layers with double readout are installed in the prototype

- SiPMs in the middle of the strips instead of the strip ends
 - To be compatible with standard EBU PCB design

Production of scintillator strips for double readout layer

- 200 × 90mm strips and 100 × 45mm strips were produced
 - 5 rows of 45mm strips at 1 line for the standard configuration
 - 90mm + 90mm + 45mm at 1 line for the double-readout layer
- Scintillator strips produced by injection moulding
 - Injection moulding would be the only possibility for the large scale production
 - Lower light yield compared to standard PVT scintillator
 - Production of large 2mm-thick plate by injection moulding → machining (strip shape + cavity)

LG HG inter-calibration

<mark>18</mark>/14

Fitting fault

- Some channels cannot catch the enough light yield for LED inter calibration
 - SiPM cannot catch the light from LED due to miss-alignment, broken LED or **SiPM**
- Some channels cannot have enough fitting points
 - Interval of LED scan is minimum
 - Overlapped region of high-gain and low-gain is narrow
 - LED scan cannot include enough points at the overlapped region

Ratio channel:126 layer:40

Fitting fault

Some channels cannot be obtained the probability of CTAP

● If gain is small, the separation of peaks of 0, 1, 2 photons is difficult

21/14