

Institute of High Energy Physics, Chinese Academy of Sciences



# High-granularity Crystal Calorimeter: R&D Status and Highlights

### Baohua Qi on behalf of CEPC Calorimeter Working Group

CALICE Collaboration Meeting at IJCLab/Orsay

September 8-10, 2021

qibh@ihep.ac.cn

### Motivations

- Background: calorimeter for future lepton colliders (e.g. CEPC)
  - Precision measurements with Higgs and Z/W
  - Jet energy resolution of 3-4%@100GeV is required
  - Particle flow approach: high-granularity calorimeter
- Why crystal calorimeter?
  - Homogeneous structure
    - Intrinsic energy resolution:  $\sim 3\%/\sqrt{E} \oplus \sim 1\%$
  - Energy recovery of electrons: to improve Higgs recoil mass
  - Capability to trigger single photons: precision  $\gamma/\pi^0$  reconstruction





| Physics process                             | Measurands                                  | Critical<br>detector | Required performance                                                                      |
|---------------------------------------------|---------------------------------------------|----------------------|-------------------------------------------------------------------------------------------|
| $ZH \rightarrow l^+ l^- X$                  | $m_H, \sigma_{ZH}$                          | Tracker              | $\Delta(1/P_T) = 2 \times 10^{-5} \oplus \frac{10^{-3}}{P(GeV) \sin^{\frac{3}{2}}\theta}$ |
| $H \to \mu^+ \mu^-$                         | $B(H \to \mu^+ \mu^-)$                      |                      |                                                                                           |
| $H \to b \overline{b}, c \overline{c}, g g$ | $B(H \to b\overline{b}, c\overline{c}, gg)$ | Vertex               | $\sigma_{r\phi} = 5 \oplus \frac{10}{p(GeV)\sin^{\frac{3}{2}}\theta}(\mu m)$              |
| $H 	o q\overline{q}, W^+W^-, ZZ$            | $B(H \to q\overline{q}, W^+W^-, ZZ)$        | Calo                 | $\sigma_E^{jet} = 3 \sim 4\% \ @100  GeV$                                                 |
| $H 	o \gamma \gamma$                        | $B(H 	o \gamma \gamma)$                     | ECAL                 | $\frac{\Delta E}{E} = \frac{0.20}{\sqrt{E(GeV)}} \oplus 0.01$                             |





### Crystal ECAL: 2 major designs

### Design 1: short bars



- A natural design compatible with PFA
  - Fine segmentation in Both longitudinal and transverse
  - Single-ended readout with SiPM

# Design 2: long bars



- Long bars: 1×40cm, double-sided readout
  - Super cell module: 40×40cm
  - Crossed arrangement in adjacent layers
  - Fine longitudinal granularity
- Save #channels and minimize dead materials
- Timing at two sides: positioning along bar



### Overview of this report: R&D status and highlights on key issues

- Updates on crystal ECAL performance studies
  - EM energy resolution: threshold and light yield requirements
  - Arbor-PFA performance
    - Separation power: two close-by particles
    - Reconstruction of  $\pi^0$ : invariant mass resolution
    - Higgs benchmark  $ZH (Z \rightarrow \nu\nu, H \rightarrow \gamma\gamma)$
- Reconstruction algorithm for long bar design
  - Status and preliminary performance studies
- Detailed studies on crystal performance
  - Geant4 full simulation of a single crystal bar
    - Response uniformity scan / optical surface models
  - Measurements on BGO crystal
    - Energy resolution and response uniformity: radioactive source test
    - Cosmic ray test: MIP response



### R&D status and highlights on key issues

- Updates on crystal ECAL performance studies
  - Arbor-PFA performance
    - Separation power: two close-by particles
    - Reconstruction of  $\pi^0$ : invariant mass resolution
    - Higgs benchmark  $ZH (Z \rightarrow \nu\nu, H \rightarrow \gamma\gamma)$
  - EM energy resolution: threshold and light yield requirements
- Reconstruction algorithm for long bar design
  - Status and preliminary performance studies
- Detailed studies on crystal performance
  - Geant4 full simulation of a single crystal bar
    - Response uniformity scan / optical surface models
  - Measurements on BGO crystal
    - Energy resolution and response uniformity: radioactive source test
    - Cosmic ray test: MIP response



### Crystal ECAL with the Arbor-PFA: overview

- Adapted from CEPCv4 baseline detector
  - Finely segmented crystal ECAL: 1cm<sup>3</sup> cubes (ideal)
  - Suitable for Arbor-PFA
- Event display
  - Impressions of topology of EM/hadron showers within jets
- Reconstruction of jets
  - EM/hadron showers  $\rightarrow$  particle combinations  $\rightarrow$  C(charged)+N(neutral)/N+N
  - $\gamma/\gamma$  separation,  $\pi^{\pm}/\gamma$  separation





#### Combination Distance 700 C+N $\pi^{\pm} \& \gamma$ 500 ti 400 ~ 20cm 300 100 200 300 400 500 Distance between n<sup>±</sup> & y [mm] 700 600 γ&γ 500 400 Ē 300 ~ 20cm 200 100 200 300 400 500 Distance between y & y [mm]



#### CEPC Software v0.1.1

### Crystal ECAL with the Arbor-PFA: separation power

CEPC Software v0.1.1

- Adapted from CEPCv4 baseline detector: SiW ECAL ٠
  - Finely segmented crystal ECAL: suitable for Arbor-PFA
- Separation power of two close-by particles: ۲
  - $\gamma/\gamma$ : two neutral EM showers



gamma/gamma Separation Efficiency



Two 5GeV  $\gamma$ , vary distance Success reconstruction:  $3.3 \text{GeV} < \text{E}_{\nu} < 6.6 \text{GeV}$ Events that  $\gamma$  decays in tracker removed



- High threshold corresponding to good separation power
- Space for improvement: ongoing studies on PFA (threshold, parameters for bush connect and clustering...)

### Crystal ECAL with the Arbor-PFA: separation power

- Adapted from CEPCv4 baseline detector: SiW ECAL
  - Finely segmented crystal ECAL: suitable for Arbor-PFA
- Separation power of two close-by particles:
  - $\pi^+/\gamma$ : charged particle and neutral particle
  - Matching clusters of charged particle to the tracking detector pi+/gamma Separation Efficiency





• Failure: The cluster of photon (left) was merged into the cluster of  $\pi$ + (right)

10GeV  $\pi^+$  and 5GeV  $\gamma$ , 3T magnetic field, vary distance Success reconstruction: 3.3GeV<E $_{\gamma}$ <6.6GeV, 9.9GeV<E $_{\pi^+}$ <10.1GeV Events that  $\pi^+/\gamma$  decays in tracker removed

DRUID, RunNum = 0, EventNum = 1 Event 1: 10GeV  $\pi^+$  & 5GeV  $\gamma$ 



- Hadronic showers: challenge on clustering
- Improvement: use energy information, shower profile...



### Crystal ECAL with the Arbor-PFA: reconstruction of $\pi^0$

- Adapted from CEPCv4 baseline detector: SiW ECAL
  - Fine granulated crystal ECAL: suitable for Arbor-PFA
- Reconstruction of  $\pi^0$ : invariant mass resolution
  - $\pi^0 \rightarrow \gamma \gamma$ : contributions from  $\gamma$  energy resolution & angle between  $2\gamma$



### Zhiyu Zhao (IHEP/SJTU)





- Crystal:  $\pi^0$  better mass resolution
- Low energy part:  $\gamma$  energy resolution dominate; high energy part: angle dominate
- Trend is similar to theoretical calculation result

### Crystal ECAL with the Arbor-PFA: Higgs benchmark

#### CEPC Software v0.1.1

- Adapted from CEPCv4 baseline detector: SiW ECAL
  - Fine granulated crystal ECAL: suitable for Arbor-PFA
- Higgs benchmark  $ZH (Z \rightarrow \nu\nu, H \rightarrow \gamma\gamma)$



- BMR: 1.2%
- Inspiration on geometrical design: gaps should be concerned



• Structures introduced by geometry boundaries

Gaps in the barrel ECAL (octaves)

#### Zhiyu Zhao (IHEP/SJTU)





### EM energy resolution: threshold and light yield requirements

- Impact on energy threshold (in MIP) and light yield (in p.e./MIP)
  - Digitization: photon statistics (crystal + SiPM ), electronics resolution



#### **Energy Resolution 100p.e./MIP**

Light Yield vs Stochastic Term

• Moderately high light yield and low threshold required for better than 3% stochastic term



### R&D status and highlights on key issues

- Updates on crystal ECAL performance studies
  - Arbor-PFA performance
    - Separation power: two close-by particles
    - Reconstruction of  $\pi^0$ : invariant mass resolution
    - Higgs benchmark  $ZH (Z \rightarrow \nu\nu, H \rightarrow \gamma\gamma)$
  - EM energy resolution: threshold and light yield requirements
- Reconstruction algorithm for long bar design
  - Status and preliminary performance studies
- Detailed studies on crystal performance
  - Geant4 full simulation of a single crystal bar
    - Response uniformity scan / optical surface models
  - Measurements on BGO crystal
    - Energy resolution and response uniformity: radioactive source test
    - Cosmic ray test: MIP response



### Layout with long crystal bars: from simulation to reconstruction

**Reconstruction:** 

1D clustering & cluster splitting:

• "Seed" in 1D cluster: local maximum && E>5MeV (~0.5MIP).

### CEPCSW

Fangyi Guo (IHEP)

- Simulation: full barrel geometry with DD4HEP
- Digitization:
  - Time resolution: 0.5 ns smearing
  - Energy threshold: 100 keV





### Reconstruction development: reconstruction of 2 photons

CEPCSW

Fangyi Guo (IHEP)

• Performance study with 2 photons (add up to 10GeV),  $\Delta x = \Delta y = 5$  cm



Photon Reconstruction Efficiency

energy photons and with varying distances



- Good separation efficiency
- New algorithm can handle ambiguities of 2 photons

### Reconstruction development: hadronic showers in ECAL

• Performance with single  $\pi^-$  reconstruction: preliminary results

#### Fangyi Guo (IHEP)



- Difficulties in hadronic shower reconstruction
  - Multiple secondary particles in the shower
  - Hard to use longitudinal information
  - A large amount of ghost hits
- Ideas and possible solutions
  - Use Arbor's ideas to connect hits
  - Reduce the iteration times
  - New  $\chi^2$  algorithm for ghost hits: match with minimum  $\chi^2$  and reduce hit conditions.
  - (Ongoing) Merge clusters with specific topology
  - (Ongoing) Identify and tag photons and MIPs first



### R&D status and highlights on key issues

- Updates on crystal ECAL performance studies
  - Arbor-PFA performance
    - Separation power: two close-by particles
    - Reconstruction of  $\pi^0$ : invariant mass resolution
    - Higgs benchmark  $ZH (Z \rightarrow \nu\nu, H \rightarrow \gamma\gamma)$
  - EM energy resolution: threshold and light yield requirements
- Reconstruction algorithm for long bar design
  - Status and preliminary performance studies
- Detailed studies on crystal performance
  - Geant4 full simulation of a single crystal bar
    - Response uniformity scan / optical surface models
  - Measurements on BGO crystal
    - Energy resolution and response uniformity: radioactive source test
    - Cosmic ray test: MIP response



### Geant4 full simulation of a single crystal bar: overview

- A single crystal bar wrapped with reflector
- Physics processes
  - Scintillating & Cherenkov
  - Boundary processes and absorption
  - SiPM modelling: geometry and response (PDE)
- Key quantities
  - Number of photons detected by 2 SiPMs
  - Time stamps of each detected photons
- Key questions to be addressed
  - Comparison with measurements of crystals in the lab
  - Comparison of models of optical processes in Geant4
  - 3 major models for optical properties in Geant4
  - UNIFIED model: analytical calculation and modelling of surfaces
  - LUT model: based on measurements (BGO crystal, hemisphere geometry)
  - LUT\_DAVIS model: based on measurements, with an emphasis on crystals for PET (e.g. LYSO)









### Uniformity scan in Geant4 simulation

#### Geant4 Simulation (v10.7)

z+ end



• Generally good response uniformity expected in simulation



### Comparison of different optical surface models

#### Geant4 Simulation (v10.7)



- UNIFIED & LUT: minor difference, need to be understood
- DAVIS: too low light output



### Measurements on BGO crystal: <sup>137</sup>Cs energy spectrum

### BGO Crystal:

- Length: 40/80/160mm
- Transverse: 20/15/10mm
- Surface: polished/ground
- Tyvek / ESR wrapping





4×4mm<sup>2</sup> window for SiPM readoout

### Photosensitive Device:

- SiPM & PMT
- SiPM: S13360-3050CS
  - 50µm pitch, 3×3mm<sup>2</sup>, 3600 pixels
- PMT: R11065
  - 76mm (3"), gain: 5 × 10<sup>6</sup>







### Uniformity scan with radioactive source

- Experiment: 400mm BGO crystal with ESR wrapping & <sup>137</sup>Cs .
- Two  $3 \times 3$  mm<sup>2</sup> SiPMs, air coupling ۲











- Trends are not significant enough due to the systematic difference between 2 SiPMs
- **Refractive index** 
  - Air: 1.00 •
  - Epoxy: 1.52 .
  - BGO: 2.15 .

- Relatively uniform response
- Will use optical grease and stable test stand to improve the crystal-SiPM coupling and reproducibility •
- To be updated with larger SiPMs ( $6 \times 6$ mm<sup>2</sup>) •

### Measurements on BGO crystal: impacts of wrapping & surfaces









ESR foil wrapping and polished surface show better energy resolution



### Measurements on BGO crystal: impacts of crystal length



- Attenuation effect is lower when using shorter crystal bar
- PMT has better acceptance (full coverage of crystal transverse area) than SiPM
- Energy resolution of PMT expected better than SiPM if we increase the high voltage

### Cosmic ray test: MIP response

• 400mm BGO crystal bar, two SiPMs double-sided readout





- MIP response MPV: ~1800p.e. (high enough for crystal ECAL)
- Plastic scintillator triggers cover larger area than crystal does, a lot of comic rays cross part of the crystal
- Some signal pulses exceed the voltage limit of oscilloscope, the Landau tail is limited

### Summary & prospects

- ECAL performance studies
  - EM energy resolution: threshold and light yield requirements
  - Separation power /  $\pi^0$  mass resolution / Higgs benchmark ZH
  - Next: study of  $H \rightarrow gg$  / jets...
- Reconstruction algorithm for long bar design
  - Status and preliminary performance studies
  - Next: single hadrons / multi-particles / jets...
- Detailed studies on crystal performance
  - Geant4 full simulation of a single crystal bar
    - Response uniformity scan / optical surface models
    - Next: adjust parameters obtained from measurements
  - Measurements on BGO crystal
    - Energy resolution and response uniformity: radioactive source test
    - Cosmic ray test: MIP response
    - Next: SiPM test / crystal test / timing studies...





### Comparison of different optical surface models

- Drawback of with ideally polished surface in simulation: trapped photons
  - Due to the ideal configuration in UNIFIED model







### Impacts of crystal length

Geant4 Simulation (v10.7)

Air gap

ESR wrapping

z+ end

- 1GeV muz- end Muon shooting the crystal bar center • Crystal bar Crystal length varies from 5mm to 400mm ٠ 6×6mm<sup>2</sup> SiPM Crystal transverse size: 1cm<sup>2</sup> ٠ 1700 1600 1500 1400 1200 1200 1200 **UNIFIED** model **UNIFIED** model #Detected Photons (mean) 24 avgPhoton\_zp avgPhoton\_zp avgPhoton\_zm avgPhoton zm 22 20 **BGO: varying lengths** PWO: varying lengths 1000 14 900 50 100 200 250 350 400 50 100 150 200 250 300 350 0 150 300 Crystal Length / mm Crystal Length / mm
- MIP response significantly depends on crystal length
- Sufficiently high MIP response of 40cm long BGO

Impact on MIP response (number of detected photons)

Light yield: 8200/MeV for BGO, 120/MeV for PWO MIP energy deposition: ~ 9MeV (MPV)

400



### Timing studies in simulation

#### Geant4 Simulation (v10.7)

- **ESR** wrapping Air gap Impact on timing: time stamps of the first detected photons z+ end 1GeVlmu z- end Muon shooting the crystal bar center • Crystal bar Crystal length varies from 5mm to 400mm ٠ resolution /ns **UNIFIED** model Number UNIFIED model StdDev of EndTime\_zp - EndTime\_zm 220 Scintillation component z-0.7 Cherenkov component z-200 • StdDev /  $\sqrt{2}$ Scintillation component z+ **Time** 180F Cherenkov component z+ 0.6 160 0.5 140F 120<del>-</del> 0.4 100F -0.01961 Mean Std Dev 0.7407 400mm BGO Integral 1000 80F 0.3 Time stamps of 1k events 60E Timing resolution for BGO 40⊨ 0.2 (StdDev of the time interval) 20 -0. 150 200 250 50 100 Time / ns • 0.5~0.7 ns time resolution expected for 40cm long BGO EndTime zp - EndTime
- Fast and slow components in time spectrum

28



- Higher light output: ~3000p.e./MIP
- Good time resolution: ~45ps



### Improvement with optical grease in simulation

#### • Improvement with optical grease

- BC-631: refraction index 1.465, 0.976g/cm<sup>3</sup>
- 400mm BGO crystal with ESR wrapping,  $3 \times 3$ mm<sup>2</sup> SiPMs



Light output increased 2.5 times: 506p.e.→1284p.e.



## Impacts of crystal transverse size

| *FWHM | 20×20  | 15×15  | 10×10  |
|-------|--------|--------|--------|
| PMT   | 25.18% | 26.65% | 29.40% |
| SiPM  | 35.61% | 25.20% | 23.71% |

- PMT
  - 20×20mm<sup>2</sup> crystal has best E.R. and most photons detected
  - No Compton backscattering peak, maybe due to the threshold of discriminator
- SiPM
  - 10×10mm<sup>2</sup> crystal has best E.R. and most photons detected

- An explanation of the different trends:
  - PMT: large transverse size, less reflection times
  - SiPM: small window size, bigger transverse size make the light output harder



