#### Progress of CEPC AHCAL Prototype Development

#### Yanyun Duan (SJTU) For the CEPC calorimeter working group

CALICE Collaboration Meeting

Sep. 9, 2021







- 2 AHCAL sensitive cells
- 3 AHCAL readout electronics and DAQ
- 4 Mechanic structure and cooling
- 5 Progress summary and next plan



- 2 AHCAL sensitive cells
- 3 AHCAL readout electronics and DAQ
- 4 Mechanic structure and cooling
- 5 Progress summary and next plan

CEPC Physical Goal

- Precise measurement of the Higgs particle's properties
- Explores new physics beyond standard model
- Precise measurement of the electroweak interaction parameters related to W and Z.

Requirements of CEPC calorimeter: high granularity

- Energy resolution reach  $30\%/\sqrt{E}$  at jet energy below 100GeV
- HCal:  $60\%/\sqrt{E(GeV)} \oplus 4\%$

| Particles in jets | Fraction of energy | Measured with           | Resolution [ $\sigma^2$ ]            |                 |
|-------------------|--------------------|-------------------------|--------------------------------------|-----------------|
| Charged           | 65 %               | Tracker                 | Negligible                           |                 |
| Photons           | 25 %               | ECAL with 15%/√E        | 0.07 <sup>2</sup> E <sub>jet</sub>   | <b>≻</b> 18%/√E |
| Neutral Hadrons   | 10 %               | ECAL + HCAL with 50%/√E | 0.16 <sup>2</sup> E <sub>jet</sub>   | J               |
| Confusion         | Required           | d for 30%/√E            | ≤ 0.24 <sup>2</sup> E <sub>jet</sub> | -               |

The AHCAL task: based on PFA, 60%/  $\sqrt{\textit{E(GeV)}} \oplus$  4%

• Designing, building and testing a full AHCAL prototype.

CEPC AHCAL: SiPM-on-Tile configuration

- Prototype: 72cm×72cm×100cm with 40 layers
- PCB: 2mm, with SiPMs, temperature sensors and SPIROC2E based readout system
- Detector cell size: 40mm×40mm×3mm
- Detector cell: scintillator made of polystyrene and wrapped in enhanced specular reflector (ESR) films.
- Active layer: SiPMs + scintillators, 12,960 channel in total
- Absorber: steel (20mm Fe)



Participating institutes: USTC+IHEP+SJTU. Overall Progress:

- PFA-based detector simulation tool and completed the design optimization of the AHCAL prototype. (Result from Yukun Shi.) (Finished)
  - Boson Mass Resolution: 4%.
  - The performance for the AHCAL prototype:
    - Linearity:  $\pm 1.5\%$

• Resolution: 
$$\frac{48\%}{\sqrt{E(GeV)}} \otimes 3\%$$

- Injection molding process to produce scintillator tiles. (Finished)
- Scintillator tiles batch testing system. (Finished, more than 14k scintillators qualified)
- SiPMs batch testing system (NDL finished, HAMAMATSU in progress.)
- HBU and DAQ system (in progress.)
- Design of the mechanical structure and cooling (in progress)

#### Content

1 CEPC AHCAL prototype

#### 2 AHCAL sensitive cells

AHCAL readout electronics and DAQ

4 Mechanic structure and cooling



### Studies on AHCAL sensitive cells

AHCAL sensitive cells progress: (Result from Jiechen Jiang)

- Structure of AHCAL tiles: 4cm  $\times$  4cm  $\times$  40 layers geometry
- Material of Scintillator: GNKD PS Tiles (injection molding scintillator)
- SiPMs: 35 layer + 5 layer backup HAMAMATSU (S14160-1315PS) + 5 layer NDL (22-1313-15-S)
- 40 sensitive layers, total readout channels: 12,960 (4cm×4cm), 5 backup layers.
- Uniformity testing of AHCAL scintillator tiles: light yield winthin 10% deviation
  - Expected the light yield of the scintillator is greater than 40p.e.
  - Expected light yield uniformity around  $\pm 10\%$ .



Reference about "Study of SiPM for CEPC-AHCAL", NIMA 980 (2020) 164481

Yanyun Duan (SJTU)

CEPC HCAI

Sep. 9, 2021 8/24

#### Scintillator tiles batch testing system

- 3 batch test system in total, USTC + SJTU + IHEP.
- Sr90 (2.28 MeV electron)
- 4 SPIROC2E+ 144 SiPMs (S13360-1325PEs)+FPGA in DIF
- Calibration and light yield measured by batch test system:

$$LY = \frac{ADC_{MIP} - ADC_{baseline}}{G_{ain_{SinglePhoton}}} (perMIP)$$



#### Reference: JINST15 C10006 (2020)

## Batch test result - light yield



#### Scintillators batch testing result



• About 91.6% of scintillators are qualified within 10% of LY window.

Yanyun Duan (SJTU)

#### SiPM Batch Test

SiPM Batch Test: (Result from Yukun Shi)

- 16 channels, SKIROC + discrete-circuit readout.
- One LED for 4 SiPMs calibration.
- Determine working voltage:
  - Single photon separation with LED
  - Operating at best SNR
- DCR and gain control
  - SiPM with too high DCR should be abandoned
  - Uniformity of SiPMs' gain should be controlled
- NDL SiPMs test finished, HAMAMATSU SiPMs in progress.



#### LED spectrum

NDL SiPM test: (Result from Yukun Shi)

- Different working voltage has been scanned
- Linear fit is used for the V-gain plots
- V break down is defined as the x intercept



#### V operation

NDL SiPM test: (Result from Yukun Shi)

- The SNR is defined as  $peak/\sigma$
- The V operation is the working voltage with best SNR
- The Vop is generally 1.5V larger than Vbr



In progress...

2 AHCAL sensitive cells

3 AHCAL readout electronics and DAQ

4 Mechanic structure and cooling



## AHCAL readout electronics and DAQ

Result from Zhongtao Shen.

- ASIC design: 9 SPIROC2E
- HBU design:  $18 \times 18 = 324$  readout channel per layer
  - The function of signal readout, electronics calibration, light calibration and temperature monitor.
- DAQ system development: FELIX card+DAQ board+DIF (Data Interface) boards+HBU





The pedestal and charge calibration results mean that the chips are working normally.



2 AHCAL sensitive cells

AHCAL readout electronics and DAQ

4 Mechanic structure and cooling



#### Mechanic Structure



Yanyun Duan (SJTU)

CEPC HCAL

## HBU consumption and cooling



The power consumption of the current version of HBU is about 10W.

## HBU consumption and cooling simulation

Result from Siyuan Song

- The thermal conductivity of Fe touch the heating source makes the temperature distribution more uniform.
- (Fe-Heating source-PCB-Scintillator)\*n-Fe structure designed
- Performance of fans with air flow cooling simulated.
  - Reduce the overall temperature, but cause the non uniformity.
  - Multilayer, the inner layers have a relatively higher temperature.
  - The simulation effect of air cooling is not bad.



Room temperature:  $20^\circ,$  heating source highest:  $30^\circ,$  controlled blew  $25^\circ$ 



Yanyun Duan (SJTU)

CEPC HCAL

- 2 AHCAL sensitive cells
- 3 AHCAL readout electronics and DAQ
- 4 Mechanic structure and cooling



Sensitive cells and Detector:

- Scintillator tile: GNKD PS Tile, batch testing finish, 91.6% pieces are quanlified within 10% of LY window.
- SiPM: 35+5 layer HMAMMATSU (S14160-1315PS) batch testing in progress, 5 layer NDL (22-1313-15-S) batch testing finished.
- Design, assembling and production of sensitive layers in progress.

Electronics:

- Developed HBU.
- Production of HBU and DAQ boards in progress.

Mechanical part:

- Design of absorb layers and supporting structure.
- Design of cooling system based on simulation result.

AHCAL Prototype

- The prototype construction will start from the end of this year.
- The cosmic and beam test is expected next year.

# Thank You!

#### Cell size simulation

Result from Yukun Shi



#### Scintillator thickness

100 HCAL CellSize (mm) 200

3.5

#### Scintillator batch testing system





Yanyun Duan (SJTU)

CEPC HCAL