Time Resolution Measurements with the SiPM-on-Tile Technology

Testbeam Results

CALICE Collaboration Meeting - IJCLab 2021

MAX-PLANCK-IN FÜR PHYSIK

Lorenz Emberger, Fabian Hummer, Frank Simon

Scintillator Timing Setup

Motivation: Understand contribution of front end and SiPM-on-Tile to the time resolution of the AHCAL

Single channel resolution: $1.1/\sqrt{2} = 0.78$ ns

Lorenz Emberger

MAX-PLANC

Scintillator Timing Setup

Motivation: Understand contribution of front end and SiPM-on-Tile to the time resolution of the AHCAL

Single channel resolution: $1.1/\sqrt{2} = 0.78$ ns

Lorenz Emberger

Strategy: Measure the time resolution of the SiPM-on-Tile technology:

- Independent of the AHCAL electronics and DAQ
- In a simple but modular setup
- Without involved calibration and reconstruction procedures
- With high particle rate and controlled energies

Beam Test Setup

Lorenz Emberger

Beam Test Setup

Stack of 4 Tiles:

- BC408 or AHCAL Scintillator
- Hamamatsu S13360-1325PE

Beam Test Setup

Stack of 4 Tiles:

C

- BC408 or AHCAL Scintillator
- Hamamatsu S13360-1325PE

Receiver Box:

- USB controlled power supply
- Split signal and power lines

nd power lines	Trigger Channel G	
	Signal Channel É Signal Channel Ć	
	Trigger Channel A	
sampling rate on 4 channels		
trigger rate		
e analog waveform		
	CALICE Meeting - IJ(

Picoscope:

Split signal an

Receiver Box:

• USB controlled power supply

Ethernet Cat 7

Stack of 4 Tiles:

- BC408 or AHCAL Scintillator
- Hamamatsu S13360-1325PE

Picoscope

Receiver Box

- Up to 2.5GHz
- 300kHz peak

BNC

Save complete

Beam Test Setup

MAX-PLANCK-I

y/sts-analysis	
nnels C and the width σ	
am of 362511 values $n=0.0082 \pm 0.0032$ $n=0.7206 \pm 0.0032$ Local $\chi^2 = 9.6644E.05$	
3 4 3	
en the channels	

MIP Time Resolution - AHCAL Scintillator

66

MIP Time Resolution - AHCAL Scintillator

Lorenz Emberger

MAX-PLANCK-INS

Time resolution=0.714/sqrt(2)=0.505ns

Interpret as intrinsic time resolution of SiPM-on-Tile

Compared to 0.780ns of the AHCAL:

AHCAL front-end contributes ~0.6ns

	AHCAL Scintillator	BC408	BC408
	30x30x3mm ³	30x30x3mm ³	20x20x3mm ³
MIP Time Resolution	0.505 ns	0.490 ns	0.371 ns

Next Studies:

- Energy binned time resolution (this Talk)
- Simulation of the experiment (next Talk by Fabian Hummer)
- Investigation of hardware time resolution (next Talk by Fabian Hummer)
- Participation in upcoming test beam at DESY

MAX-PLAN

- Hit time distribution of indiv. channel has tail to the right
- Two (or more?) possible reasons:
- 1. Timewalk

- Higher amplitude -> faster rise time:
- Tail contains low energy events
- But: Tail also present after time walk correction

- Hit time distribution of indiv. channel has tail to the right
- Two (or more?) possible reasons:
- 1. Timewalk
- 2. Photon emission and counting
 - Different times of threshold crossing of signals of the <u>same amplitude</u> due to:
 - asymmetric emission time distribution of the scintillator
 - detector noise
 - poisson counting

Binning of time walk corrected dataset:

- 0.2 MIP bins from 0.5 MIP to 5.1 MIP hit energy
- 0.4 MIP bins from 5.1 MIP to 7.5 MIP hit energy
- 1 MIP bins from 7.5 MIP to 15.5 MIP hit energy (mainly from absorber runs)

Signal times obtained with fixed amplitude threshold (25mV = ~3 pe) to :

- Disentangle effects from time walk and scintillator/photon counting
- Investigate different thresholds

- Only accept events with both hits within the same energy bin (only 10% of events)
- Trigger time obtained with constant fraction discrimination (elim. time walk in trigger)

MAX-PLANC

Distributions get narrow and approach a gaussian:

 Study evolution of skew with energy

Studied Scenarios:

- AHCAL Scintillator 30 x 30 x 3 mm³
- BC408 30 x 30 x 3 mm³ and 20 x 20 x 3 mm³

AHCAL:14.3 pe/MIP BC408: 22.87 pe/MIP 20 x 20mm2 BC408: 21.85 pe/MIP

CALICE Meeting - IJCLab 2021

Energy Dependent Time Resolution

Studied Scenarios:

- AHCAL Scintillator 30 x 30 x 3 mm³
- BC408 30 x 30 x 3 mm³ and 20 x 20 x 3 mm³

Poissonian statistics well reproduced:

Material and size dependent

Noise (B) contribution to be understood Sub 100ps for very high signals

Impact of tile size on time resolution:

• 20mm x 20mm, 30mm x 30mm, 40mm x 40mm

Impact of scintillator properties on time resolution:

Properties	BC404	BC408	BC418	BC422Q
Light Output, %Anthracene	68	64	67	19
Rise Time (ns)	0.7	0.9	0.5	0.11
Decay Time (ns)	1.8	2.1	1.4	0.7
Pulse Width FWHM (ns)	2.2	2.5	1.2	0.36

MAX-PLA

From crystals.saint-gobain.com

Modifications to the setup:

- Improved mechanical stability
- Cooling plates for gain stability
- External trigger generation to enable 200ps sampling

Testbeam in October 2020 at DESY was successful:

- Test of SiPM-on-Tile technology with AHCAL scintillator and BC408
- Investigation of MIP time resolution \bullet
- Energy binned time resolution up to 15 MIP thanks to 10⁸ recorded events

Upcoming testbed in October 2021 at DESY:

- Test scintillators with different timing properties
- Modifications to the setup for better stability, increased sampling resolution, ...

Comparison of PE Calibration

ChannelC: AHCAL: 65.370mVns = 1PE BC408: 65.680mVns = 1PE BC408small: 71.930mVns = 1PE

ChannelE: AHCAL: 63.656mVns = 1PE BC408: 63.534mVns = 1PE BC408small: 70.717mVns = 1PE

Lorenz Emberger

CALICE Meeting - IJCLab 2021

AHCAL Dataset - Time Walk

MAX-PLANC

Time walk correction reduces width of distribution, but tail remains

