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Motivation.
> The AHCAL has measured no neutral

particle data, and thus neutral hadron
showers can only be simulated;

> Particle Flow clustering algorithms must
be validated using measured data;

> Currently achieved using selection criteria
to remove ionising track:

> Ehit ≥ 3 MIP
> rhit ≥ 60 mm / 2 cells
> Khit −Kstart ≥ 0

> Ratio of estimated density functions of
K0
L and π− −MIP reveal MIP cut

removes too many hits close to shower
start

> Motivation: shower separation depends
on quality of neutrals → is it possible to
produce a superior alternative?
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Motivation.

Goals:

> Train an algorithm to perform the conversion of a
simulated π− hadron shower to a simulated K0

L hadron
shower, as observed with AHCAL, using a neural network
solution, to produce arti�cial K0

L hadron showers;

> Quantify agreement of method with simulated kaons
compared to CALICE MIP Cut.

> Then, apply to simulation/data in exactly the same
shower separation study shown in Spring 2021 CALICE
Meeting.

Note: link to my last meeting contribution available here.
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https://agenda.linearcollider.org/event/9076/contributions/47713/attachments/36515/57023/ShowerSeparationin5DUsingMLTech.pdf


CycleGAN.

> CycleGAN is a special class of neural
network designed to turn data of Domain
A into data of Domain B;

> Conversion achieved between classes of
regular, structured images of the same
size: for instance, horse to zebra.

> Does not require matched examples,
only examples of A and B;

> Powerful tool to examine di�erences
between classes without prior knowledge.

Jun-Yan Zhu et al. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial
Networks. 2020. arXiv: 1703.10593 [cs.CV].
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https://arxiv.org/abs/1703.10593


CycleGAN.

> Hadron shower data is much more
challenging than images:

> Number of elements not constant;
> Number of dimensions much

greater;
> Computationally unfeasible to

work with 3D ’hadron shower
images’;

> No 1:1 mapping between elements.

Jun-Yan Zhu et al. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial
Networks. 2020. arXiv: 1703.10593 [cs.CV].
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CycleGAN.
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Vector-Modi�ed CycleGAN.

Main Modi�cations to State-of-the-Art:

> Use a k-Nearest Neighbours graph as input→
> reduces dimension of input data;
> provides emphasis on local structure;
> memory e�cient.

> Output a vector for each point to change class →
> measurements cannot be created or destroyed, only

displaced;
> shower properties strongly conserved;
> data of di�ering cardinalities can be compared;
> Output vectors can be studied→ transformation can be

studied on a case by case basis.
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Vector-Modi�ed CycleGAN.
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Vector-Modi�ed CycleGAN - An Analogy.

> This solution is built around the
nature’s solution to this problem:
camou�age.

> Oxford Dictionary camou�age
de�nition:

> ’the way in which an animal’s
colour or shape matches
what is around or near it and
makes it di�cult to see’
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Vector-Modi�ed CycleGAN - An Analogy.

> An animal cannot ’become’ its
environment: it has to change its
existing structure to become
’more like’ its environment.

> With a vector transformation,
the CycleGAN must act similarly:

> it is biased not to modify
the intrinsic properties of
the input;

> it allows conversion
between classes of object
of intrinsically di�erent
shapes and sizes.
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Simulation Information.

Simulation of π−/K0
L hadronic showers using Geant4 in the

AHCAL were used:
> full detector simulation (inc. SiPM saturation/noise

thresholds etc.)
> Physics list: QGSB_BERT_HP
> Based on June 2018 CALICE Testbeam taken at SPS;
> Simulated particle energies:

10, 20, 30, 40, 50, 60, 70, 80 GeV
> Training events: ∼ 2× 105 pairs
> Validation events: ∼ 4× 105 events (2 ≤ Kstart < 15);
> Model information in backup slides.

Also, more information about model/training in upcoming paper!
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Results: Example 1, 40 GeV.

What one learns:

> Colour axis describes length of transformation vector;

> Longer vector→ hit less likely to be in domain of K0
L;

> MIP track easily distinguishable in an event display.

Jack Rolph | UHH | September 8, 2021 | Page 12



Results: Example 1, 40 GeV.

What one learns:

> MIP hits are typically merged with the hadron shower core;

> Total shower energy is re-weighted to compensate for ’missing’ MIP track
energy.

> Important: neural network can allocate energy to an already active cell. This
energy is resummed after the conversion has taken place.

Jack Rolph | UHH | September 8, 2021 | Page 13



Results: Example 2, 40 GeV.

What one learns:

> CycleGAN does nothing when no MIP track is present.
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Comparison Plots: Khit −Kstart.
What one learns:

> Slightly better agreement overall using
CycleGAN method than with CALICE MIP
Cut;

> Particularly, improvement in agreement
in distributions at the close to starting
position.

> However, very close agreement overall.

Notes:

> Top �gure is comparison of distributions at
incident energy of 40 GeV;

> Kullback-Leibler Divergence measures
’information lost using one probability
distribution to describe another’ :

D(P |Q) =
N∑

i=0

Pi log(
Pi

Qi

) (1)

> Binning is optimised using Knuth’s Rule
where appropriate.

> Range chosen: left-tailed 95% con�dence
interval.
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Comparison Plots: rhit Distribution.

What one learns:
> Slightly worse agreement overall using

CycleGAN method than with CALICE MIP
Cut;

> However, very close overall.

Notes:

> Top �gure is comparison of distributions at
incident energy of 40 GeV;

> Range chosen: central 90% con�dence
interval. item Else, as in previous slide;
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Comparison Plots: Esum Distribution.

What one learns:
> Main improvement: machine learning

method capable of re-weighting shower
energy;

> This energy was observed to be ’added
back’ to the electromagnetic core;
energy is lost when removed from the
hadron shower.

>

> Very signi�cant e�ect for ’low’ energy
particles, less so for ’high’ energy
particles;

Notes:

> Top �gure is comparison of distributions at
incident energy of 10 GeV;

> Else, as in previous slide;
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Comparison Plots: logEhit Distribution.

What one learns:
> Main �aw: the hit energy distribution is

systematically shifted to higher energy.

> Agreement in this case is poor, since the

total shower energy cannot be increased

without either:
> increasing average hit energy;
> increasing the number of hits by

re-sampling;
> Likely resolvable with more sophisticated

traditional model zoo: i.e. CycleGAN,
TravelGAN + memory.

Notes:

> As in previous slide;
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Comparison Plots: PID performance.
> Vladimir’s PID used to validate further;

> Boosted Decision Tree �rst trained to
distinguish simulated π− and K0

L
hadron showers, from half validation
sample;

> ROC curve was measured w.r.t remaining
validation sample, using simulated, MIP Cut,
and CycleGAN, arti�cialK0

L ;

> Hypothesis: the more similar the ROC
curve for arti�cialK0

L/π− classi�cation
is to the ROC curve for simulatedK0

L/π−

classi�cation, the more convincing the
arti�cial K0

L showers must be.

What one learns:
> Both MIP Cut and CycleGAN produce

similar ROC Curves;
> The methods produce more easily

classi�able K0
L hadron showers than in

simulation;
> Reason: both methods systematically

reduce the number of active cells in a
π− shower too greatly.
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Comparison Plots: Nhits.
> systematically lower numbers

of active cells in 10 GeV
arti�cial K0

L hadron showers
than for simulated π− hadron
showers;

> π− and K0
L have similar

numbers of active cells during
an event - removing these
elements/allocating energy
back to the hadron shower
results in arti�cial events with
too few active hits;

> Only solution is re-sampling
event:

> Theoretically possible with
ordinary CycleGAN;

> Practically, requires greater
computing resources and strong
constraints on model output (i.e.
to enforce shower start position);
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Conclusion and Outlook.

> A method for determining a charged-neutral conversion has been
deduced using modi�ed CycleGAN:

> Is this better than CALICE MIP Cut at producing arti�cial
neutrals in simulation?

> Pros: total reconstructed energy re-weighted to account for missing MIP
track and produces a more consistent Khit −Kstart distribution.

> Cons: hit energy distribution must shift to higher energies;

> PID validation shows the methods produce similarly distinguishable K0
L

hadron showers;

> Reason: both methods reduce the overall number of active cells too
much → re-sampling is therefore mandatory.

> Long-term Solution: a traditional cycle-consistent method, when the
resources become available to train one.

> Next steps: use CycleGAN neutrals in shower separation study.
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Outline.

> Backup
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Training Cycle.
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Generator Network.
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Discriminator Network.
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Unsupervised Classi�cation.

> Suppose we knew nothing about the physics of hadron
showers.

> Using only this model and example measurements of π−

and K0
L hadron showers, how well could we determine a

MIP selection criteria?

> i.e. can we used this method for inventing/informing
unsupervised selection cuts?

> For instance: determining background/detector noise,
systematic di�erences between data/simulation etc.
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Unsupervised Classi�cation.
> An unsupervised k-means clustering

algorithm was optimised to cluster hits
into two groups, using the vector
elements as input.

> The only prior is that there are two groups:
K0

L-like hits (unmodi�ed) and ’other’
hits (modi�ed)

> No other information is provided.

> No ground truth available: the behaviour
of the resulting classi�er was compared to
the existing CALICE MIP Cut.

What one learns:
> Distributions of the selected hits suggest

that the unsupervised classi�er provides a
selection criteria that classi�es hits with
similar properties, and of a similar number
and total energy event-by-event.

> Deviations are however, observed at the

tails of each distribution, where:
> Nhits,MIP > 10;
> Esum,MIP > 0.4 GeV;
> Khit > Kstart
> Kstart > 1.6 MIP;
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Unsupervised Classi�cation.

> An unsupervised k-means clustering
algorithm was optimised to cluster hits
into two groups, using the vector
elements as input, using half the validation
set, and tested on the other half.

> The only prior is that there are two groups:
K0

L-like hits (unmodi�ed) and ’other’
hits (modi�ed)

> No other information is provided.

> No ground truth available: the behaviour
of the resulting classi�er was compared to
the existing CALICE MIP Cut.

What one learns:
> 70% of the same hits are classi�ed as

MIP by the unsupervised classi�er as the
standard cut.
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Comparison Plots: Nhits.

> Example: systematically lower numbers of
active cells in 10 GeV arti�cial K0

L

hadron showers than for simulated π−

hadron showers.
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