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Motivation

Charged Shower
o Eun-e33l6cey

Neutral Shower
o Eun=23858G0V

Removed MIP Track

> The AHCAL has measured no neutral . o
particle data, and thus neutral hadron ] e
showers can only be simulated; :

> Particle Flow clustering algorithms must
be validated using measured data;

Energy (MIP]

> Currently achieved using selection criteria
to remove ionising track:
> Epit > 3MP
> 7rpie > 60 mm /2 cells
> Kpit — Kstart 2 0

> Ratio of estimated density functions of After Kstart
K9 and 7= — MIP reveal MIP cut - distributions of
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removes too many hits close to shower 8 " caunl
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> Motivation: shower separation depends
on quality of neutrals — is it possible to
produce a superior alternative?
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Motivation

Goals:

Train an algorithm to perform the conversion of a
simulated 7~ hadron shower to a simulated K hadron
shower, as observed with AHCAL, using a neural network
solution, to produce artificial K hadron showers;

Quantify agreement of method with simulated kaons
compared to CALICE MIP Cut.

Then, apply to simulation/data in exactly the same
shower separation study shown in Spring 2021 CALICE
Meeting.

Note: link to my last meeting contribution available here.
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https://agenda.linearcollider.org/event/9076/contributions/47713/attachments/36515/57023/ShowerSeparationin5DUsingMLTech.pdf

CycleGAN

> CycleGAN is a special class of neural
network designed to turn data of Domain
A into data of Domain B;

Input Image Predicted Image

> Conversion achieved between classes of
regular, structured images of the same
size: for instance, horse to zebra.

> Does not require matched examples,
only examples of A and B;

> Powerful tool to examine differences
between classes without prior knowledge.

Jun-Yan Zhu et al. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial
Networks. 2020. arXiv: 1703.10593 [cs.CV]. UH
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https://arxiv.org/abs/1703.10593

CycleGAN

> Hadron shower data is much more

Input Image Predicted Image

challenging than images:

> Number of elements not constant;

> Number of dimensions much
greater;

> Computationally unfeasible to
work with 3D 'hadron shower
images’;

> No 1:1 mapping between elements.

Jun-Yan Zhu et al. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial
Networks. 2020. arXiv: 1703.10593 [cs.CV]. UH
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https://arxiv.org/abs/1703.10593

CycleGAN

L2 Loss

Gae ] Gea

= e

WS Zl

Real Image in domain A Fake Image in domain B

'\ Reconstructed Image
Gea generates a reconstructed image of domain A.

This makes the shape to be maintained
real or fake ? D: when Gas generates a horse image from the zebra.

/

Discriminator for domain B

Real Image in domain B
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Vector-Modified CycleGAN

Main Modifications to State-of-the-Art:

Use a k-Nearest Neighbours graph as input —
reduces dimension of input data;
provides emphasis on local structure;
memory efficient.

Output a vector for each point to change class —

measurements cannot be created or destroyed, only
displaced;

shower properties strongly conserved;

data of differing cardinalities can be compared;

Output vectors can be studied — transformation can be
studied on a case by case basis.
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Vector-Modified CycleGAN
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Vector-Modified CycleGAN - An Analogy

> This solution is built around the
nature’s solution to this problem:
camouflage.

> Oxford Dictionary camouflage
definition:
> 'the way in which an animal’s
colour or shape matches

what is around or near it and
makes it difficult to see’

CAu @
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Vector-Modified CycleGAN - An Analogy

> An animal cannot 'become’ its
environment: it has to change its
existing structure to become
‘more like’ its environment.

> With a vector transformation,
the CycleGAN must act similarly:

> it is biased not to modify
the intrinsic properties of
the input;

> it allows conversion
between classes of object
of intrinsically different
shapes and sizes.
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Simulation Information

Simulation of 77/K? hadronic showers using Geant4 in the
AHCAL were used:

> full detector simulation (inc. SiPM saturation/noise
thresholds etc.)

Physics list: QGSB_BERT_HP
Based on June 2018 CALICE Testbeam taken at SPS;

Simulated particle energies:
10, 20, 30, 40, 50, 60, 70, 80 GeV

Training events: ~ 2 x 10° pairs
Validation events: ~ 4 x 10° events (2 < Kgqrt < 15);
Model information in backup slides.

\Y

v

\'

\Y

\'

\'

Also, more information about model/training in upcoming paper!
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Results: Example 1, 40 GeV
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What one learns:
Colour axis describes length of transformation vector;
Longer vector — hit less likely to be in domain of K9;
MIP track easily distinguishable in an event display.

Jack Rolph | UHH | September 8, 2021 | Page 12



Results: Example 1, 40 GeV

" Shower
®  Esum = 40.981 GeV 100

Khit [cells]

o o o

30 10-2

What one learns:
MIP hits are typically merged with the hadron shower core;
Total shower energy is re-weighted to compensate for 'missing” MIP track

energy.
Important: neural network can allocate energy to an already active cell. This
energy is resummed after the conversion has taken place.
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Results: Example 2, 40 GeV

Fake kY Shower
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What one learns:

CycleGAN does nothing when no MIP track is present.
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What one learns:

Slightly better agreement overall using
CycleGAN method than with CALICE MIP
Cut;

—

1074 —
— Fake K2, MIP Cut Particularly, improvement in agreement
10-5 —— Fake K7, CycleGAN in distributions at the close to starting
1.50 position.
o 1.25
B 1.00 However, very close agreement overall.
o 0.75
S °© o 0 QO'SO
nd A ) Notes:
Khit — Kstart [cells] > Top figure is comparison of distributions at
incident energy of 40 GeV;
- Khit = K.
o 1077 hit = Dstart > Kullback-Leibler Divergence measures
2 ‘information lost using one probability
S 2 distribution to describe another’:
o 10~
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o
8210 \ D(PIQ) = 3 Pilog(=4) )
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Comparison Plots: 7,,;; Distribution
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What one learns:

Slightly worse agreement overall using
CycleGAN method than with CALICE MIP
Cut;

However, very close overall.

> Top figure is comparison of distributions at
incident energy of 40 GeV;

> Range chosen: central 90% confidence
interval. item Else, as in previous slide;




Comparison Plots: E,,, Distribution
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one learns:

Main improvement: machine learning
method capable of re-weighting shower
energy;

This energy was observed to be ‘added
back’ to the electromagnetic core;
energy is lost when removed from the
hadron shower.

Very significant effect for ‘low’ energy
particles, less so for "high” energy
particles;

Top figure is comparison of distributions at
incident energy of 10 GeV;

Else, as in previous slide;




Comparison Plots: log F};; Distribution

What one learns:

—— Fake kP, MIP Cut
—— Fake KP. CycleGAN

Main flaw: the hit energy distribution is

1.10
° / 1.05 systematically shifted to higher energy.
=] 1.00 o . .
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h O 1 O 1h O 00'90 total shower energy cannot be increased
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o 107! gﬁ hit re-sampling;
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Comparison Plots: PID performance

ROC Curve
~IK? ificati ., .
10 BDT m™/K{ Classification > Vladimir’s PID used to validate further;
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) .
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Comparison Plots: N,
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systematically lower numbers
of active cells in 10 GeV
artificial K% hadron showers
than for simulated 7~ hadron
showers;

7~ and Kg have similar
numbers of active cells during
an event - removing these
elements/allocating energy
back to the hadron shower
results in artificial events with
too few active hits;

Only solution is re-sampling
event:

> Theoretically possible with
ordinary CycleGAN;

> Practically, requires greater
computing resources and strong
constraints on model output (i.e.
to enforce shower start position);




Conclusion and Outlook

> A method for determining a charged-neutral conversion has been
deduced using modified CycleGAN:

> Is this better than CALICE MIP Cut at producing artificial
neutrals in simulation?

>

Pros: total reconstructed energy re-weighted to account for missing MIP
track and produces a more consistent K}, ;; — Kstart distribution.

Cons: hit energy distribution must shift to higher energies;

PID validation shows the methods produce similarly distinguishable K%
hadron showers;

Reason: both methods reduce the overall number of active cells too
much — re-sampling is therefore mandatory.

Long-term Solution: a traditional cycle-consistent method, when the
resources become available to train one.

> Next steps: use CycleGAN neutrals in shower separation study.

CAI.l@
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Generator Network
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Discriminator Network
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Unsupervised Classification

CAI.l@

Suppose we knew nothing about the physics of hadron
showers.

Using only this model and example measurements of 7~
and K% hadron showers, how well could we determine a
MIP selection criteria?

i.e. can we used this method for inventing/informing
unsupervised selection cuts?

For instance: determining background/detector noise,
systematic differences between data/simulation etc.
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Unsupervised Classification

> An unsupervised k-means clustering

— cauce mp cut 107 —™m algorithm was optimised to cluster hits
100) — neans Gasiter into two groups, using the vector
10-2 elements as input.
107t 10-3 > The only prior is that there are two groups:
10-2 K% -like hits (unmodified) and "other’
107 ey hits (modified)
~ Cindans Chssiter . L .
1072 150 150 > No other information is provided.
. . L . .
2 100 il 200 > No ground truth available: the behaviour
o g-gg & 8-;2 of the resulting classifier was compared to
0.00 0.00 the existing CALICE MIP Cut.
NI S e s 5 o8 % ¢
Esum, mip [GeV] Nhits, mip

one learns:

—— CALICE MIP cut
__ Unsupervised
keMeans Classifier

Distributions of the selected hits suggest
that the unsupervised classifier provides a
selection criteria that classifies hits with
similar properties, and of a similar number
and total energy event-by-event.

Deviations are however, observed at the

tails of each distribution, where:

0OooorRH
oNuNONG
StioGiauno

Khit = Kstart [cells] logEhit
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Unsupervised Classification
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An unsupervised k-means clustering
algorithm was optimised to cluster hits
into two groups, using the vector
elements as input, using half the validation
set, and tested on the other half.

The only prior is that there are two groups:
K% -like hits (unmodified) and "other’
hits (modified)

No other information is provided.

No ground truth available: the behaviour

of the resulting classifier was compared to
the existing CALICE MIP Cut.

one learns:

70% of the same hits are classified as
MIP by the unsupervised classifier as the
standard cut.




Comparison Plots: Ny,
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> Example: systematically lower numbers of

active cells in 10 GeV artificial K

hadron showers than for simulated 7~
hadron showers.
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