CPV in $\mathrm{e}^{+} \mathrm{e}^{-H}(Z Z-$ fusion $)$ at 1 TeV ILC

STATUS UPDATE

TATJANA AGATONVIC-JOVINET AL
VINCA INSTITUTE OF NUCLEAR SCIENCES, UNIVERSITY OF BELGRADE

Outline

- SM-like Higgs boson as a CPV mixture of CP even and odd states
- Way to probe HVV vertices (V=Z, W) in Higgs production and decay
- Proposed method of measurement
- Higgs production in ZZ-fusion
- Signal and background at 1 TeV ILC
- Preselection
- Reconstructed CPV observable for signal and background
- Production request

SM-like Higgs boson as a CPV mixture of CP even and odd states

- SM-like Higgs boson could be a mixture of scalar (H) and pseudoscalar state (A):
$h=H \cdot \cos \psi+A \cdot \sin \psi$
- Correlation between spin orientations of VV carries information on the Higgs CP state
- Numerous Higgs production processes at linear machines can be exploited (hZ, WW-fusion, ZZ-fusion) at various c.m. energies
- Both Higgs production and decays can be studied

Way to probe HVV vertices (V=Z, W) in Higgs production and deca

- hVV vertex (CPV at a loop level):

$$
\mathscr{L}_{V V H} \sim M_{Z}^{2}\left(1 / v+a_{V} / \Lambda\right) Z_{\mu} Z^{\mu} h+\left(b_{V} / 2 \Lambda\right) Z_{\mu \nu} Z^{\mu \nu} h+\left(\tilde{b}_{V} / 2 \Lambda\right) Z_{\mu \nu} \tilde{Z}^{\mu \nu} h
$$

- hff vertex (CPV at a tree level):

$$
\mathscr{L}_{f f H} \sim g f\left(\cos \psi_{C P}+i \gamma^{5} \sin \psi_{C P}\right) f h
$$

- Suppressed effect w.r.t. (i.e.) Higgs to $\tau \tau$ decay, but relatively high statistics
 available (number of events inclusive Higgs boson in $1 \mathrm{ab}^{-1}$ at 1 TeV ILC)

Way to probe HVV vertices (V=Z, W)

 in Higgs production and decay- Information on spin orientations of $V V$ states is contained in the angle between production (decay) planes
- Angle between planes is the angle between unit vectors orthogonal to those planes:

$$
\begin{equation*}
\hat{n}_{1}=\frac{q_{e_{i}}-\times q_{e_{f}-}}{\left|q_{e_{i}} \times q_{e_{f}}-\right|} \quad \text { and } \quad \hat{n}_{2}=\frac{q_{e_{i}}+\times q_{e_{f}+}}{\mid q_{e_{i}}+\times q_{e_{f}}+} \tag{1}
\end{equation*}
$$

- There is more than one way (convention) to define n_{1} and n_{2} from 3 vectors forming the planes ($1^{\text {st }}$ plane: initial electron, final electron, $\mathrm{Z}_{\mathrm{e}-i} 2^{\text {nd }}$ plane: initial positron, final positron, $\mathrm{Z}_{\mathrm{e}+}$)
- Depending on the convention, orientation of n_{2} and n_{2} could be in the same hemisphere (angle between n_{1} and n_{2} smaller than 180 deg.) or in the opposite (angle between n_{1} and n_{2} larger than 180 deg.)
- With the definition in (1), unit vectors n_{1} and n_{2} share the same
 hemisphere
- Since orientation of vectors n_{1} and n_{2} is 'the same', the angle between planes can be retrieved through the arccos function as:
- $\phi=a \arccos \left(\pm \hat{n}_{1} \cdot \hat{n}_{2}\right)$
- Sign \pm retain natural domain of arccos function
- where a defines how the second (positron) plane is rotated w.r.t. the first (electron) plane; If it falls backwards (as illustrated) $a=-1$, otherwise $a=1$. Direction of Z in the e^{-}plane regulates the notion of direction (fwd. or back.)
$-a=\frac{q_{Z_{e^{-}} \cdot} \cdot\left(\hat{n}_{1} \times \hat{n}_{2}\right)}{\left|q_{Z_{e^{-}} \cdot} \cdot\left(\hat{n}_{1} \times \hat{n}_{2}\right)\right|}$

Higgs decays: $H \rightarrow W W$ * and $H \rightarrow Z Z^{*}$

- Unit vectors orthogonal to decay planes (one possible definition):

$$
\hat{n}_{1}=\frac{q_{f(V)} \times q_{\bar{f}(V)}}{\left|q_{f(V)} \times q_{\bar{f}(V)}\right|} \quad \text { and } \quad \hat{n}_{2}=\frac{q_{f\left(V^{*}\right)} \times q_{\bar{f}\left(V^{*}\right)}}{\left|q_{f\left(V^{*}\right)} \times q_{\bar{f}\left(V^{*}\right)}\right|}
$$

- n_{1} and n_{2} are now in 'the opposite' directions, to preserve correct árcos output (in the range o-180 deg.) define ϕ as:
$\phi=a \arccos \left(-\hat{n}_{1} \cdot \hat{n}_{2}\right)$
- where a defines how the second (off-shell boson V^{*}) plane is rotated w.r.t. the first (on-shell boson) plane; If it falls backwards (as illustrated) $a=-1$, otherwise $a=1$. Direction of the on-shell boson (V) regulates the notion of direction (fwd. or back.)
- $a=\frac{q_{V} \cdot\left(\hat{n}_{1} \times \hat{n}_{2}\right)}{\left|q_{V} \cdot\left(\hat{n}_{1} \times \hat{n}_{2}\right)\right|}$

- It is essential to distinguish between fermion and antifermion (jet-charge)
- Examples of possible definitions of n_{1} and n_{2} in ZZ-fusion:

1. $\phi_{1}=\arccos \left(+\hat{n}_{1} \cdot \hat{n}_{2}\right) \quad$ where $\hat{n}_{1}=\frac{q_{e^{-}}-\times q_{e_{-}-}}{\left|q_{e_{i}}-\times q_{e_{f}-}\right|} \quad$ and $\quad \hat{n}_{2}=\frac{q_{e_{+}}+\times q_{e_{e_{f}}}}{\left|q_{e_{i}}+\times q_{e_{f}+}\right|}$
2. $\phi_{2}=\arccos \left(-\hat{n}_{3} \cdot \hat{n}_{4}\right) \quad$ where $\hat{n}_{3}=\frac{q_{Z_{e^{-}} \times q_{e_{i}^{-}}}}{\left|q_{Z_{e^{-}} \times q_{e_{i}^{-}}}\right|} \quad$ and $\quad \hat{n}_{4}=\frac{q_{Z_{e^{-}} \times q_{e_{f}}}}{\left|q_{Z_{e^{-}} \times q_{e_{f}}}\right|}$
3. $\phi_{3}=\arccos \left(+\hat{n}_{5} \cdot \hat{n}_{6}\right)$ where $\hat{n}_{5}=\frac{q_{Z_{e^{-}} \times} q_{e_{i}^{-}}}{\left|q_{Z_{e^{-}} \times} q_{e_{i}^{-}}\right|}$and $\quad \hat{n}_{6}=\frac{q_{Z_{e}+} \times q_{e_{f}+}}{\left|q_{Z_{e^{+}}+} q_{e_{f}+}\right|}$

- No matter how we define a unit vector orthogonal to a production (decay) plane, consistently defined ϕ leads to the same results (in production and decay).

ϕ distributions in Higgs decays to $W W^{*}$ and $Z Z^{*}$

J_{m}^{+}(red circles), J_{h}^{+}(green squares), J_{h}^{-}(blue diamonds)

scenario	X production	$X \rightarrow V V$ decay	comments
0_{m}^{+}	$g g \rightarrow X$	$g_{1}^{(0)} \neq 0$ in Eq. (9)	SM Higgs boson scalar
0_{h}^{+}	$g g \rightarrow X$	$g_{2}^{(0)} \neq 0$ in Eq. (9)	scalar with higher-dimension operators
0^{-}	$g g \rightarrow X$	$g_{1}^{(0)} \neq 0$ in Eq. (9)	pseudo-scalar

pseudo-scalar

We are correctly reproducing ϕ distributions at the generator level both for $H V V$ decay vertices $(V=Z, W)$

Proposed method

- Consider $H \rightarrow b b$ and $H \rightarrow W W \rightarrow 4$ jets decays
- 1. Cover most of the Higgs width ($\sim 80 \%$)
- 2. Avoid high cross-section $e^{+} e^{-} \rightarrow e^{+} e^{-} \gamma$ background present in inclusive reconstruction
- 3. Combine results
- Select ZZ-fusion (signal is mixed with $H Z$) using $m\left(\mathrm{e}^{+} e^{-}\right)$

- Isolate 2 leptons $\left(\mathrm{e}^{+} e^{-}\right)$
- Reconstruct ϕ
- Suppress background with MVA
- Describe ϕ of the signal and background with PDFs
- Reconstruct ϕ of the signal from pseudo-data $(S+B)$
- Fit $\psi_{C P}$ from the ϕ distribution
- Repeat pseudo experiments
- Combine channels

Higgs production in ZZ-fusion

- WHIZARD v1.95, $500 \mathrm{GeV} / 0.5 \mathrm{ab}^{-1}, 1 \mathrm{TeV} / 1 \mathrm{ab}^{-1}, 1.4 \mathrm{TeV} / 1 \mathrm{ab}^{-1}$, unpolarized
- t-channel process, electrons (spectators) are scattered forward - not full statistics available in the tracker
- Due to this fact 1 TeV is the optimal energy for this study (already at i.e. 1. 4 TeV the number of events with both electron is the tracker is $\sim 1 / 5$ of the available statistics). At 500 GeV i.e. x-section for $Z Z$ fusion is relatively small (7.2 fb) and number of events in the tracker is order of magnitude smaller than at 1 TeV
- Around 8-9•103 events with both $\mathrm{e}+$ and e - in the tracker in $1 \mathrm{ab}^{-1}$ at 1 TeV ILC

82 \% @ 500 GeV

41.7% @ 1 TeV

21.8 \% @ 1.4 TeV

Preselection

- ILC sample at 1 TeV, normalized to $1 \mathrm{ab}^{-1}$, with LR polarization $(-1,1)$, normalized to ($-0.8,+0.3$) as:
- $W_{\text {pol }}=\left(\frac{1-P_{e_{-}}}{2}\right) \cdot\left(\frac{1+P_{e_{+}}}{2}\right)=\left(\frac{1-(-0.8)}{2}\right) \cdot\left(\frac{1+0.3}{2}\right)=0.585$
- Preselection: find 2 isolated electrons ($e^{+} e^{-}$)
- Goal: reduce high cross-section backgrounds
- Requirements:
- Track energy: $E_{\text {track }}>100 \mathrm{GeV}$ - spectators are energetic (3.3% loss)
- Impact parameter: $d_{0}<0.1, z_{0}<1.0$
- Ratio of deposition: $R_{\text {cal }}>0.95$
- Optimize cone vs. track energy

Isolation curve:
$E_{\text {cone }}^{2}<40 E_{\text {track }} \mathrm{GeV}-20 \mathrm{GeV}^{2}$

Signal and considered available background samples

- Preselection efficiencies -

$\begin{gathered} 1 \mathrm{TeV} / 1 \mathrm{ab}^{-1} \\ / \mathrm{pol}(-80 \%,+30 \%) \end{gathered}$	Sample	$\sigma[\mathrm{fb}]$	Input	Output	Efficiency [\%]
Signal:	$e^{+} e^{-} \rightarrow e^{+} e^{-} H(H \rightarrow b \bar{b})$	28.6	$\begin{aligned} & N_{\text {reco }}^{\text {tot }}=6012 ; N_{\text {reco }}^{\text {norm }}=16713 \\ & N_{\text {signal }}=1121 ; N_{\text {signal }}^{\text {nigm }}=3116 \end{aligned}$	$\begin{gathered} N_{\text {sig//iso }}=873 \\ N_{\text {sig } / \text { iso }}^{\text {norm }}=2426 \end{gathered}$	78 \%
Background samples:	$e^{-} e^{+} \rightarrow e^{-} e^{+} q \bar{q}$	2577.3	$N_{e v}=59793 ; N_{e v}^{\text {norm }}=34978$	$\begin{gathered} N_{e v}=1447 \\ N_{e v}^{\text {norm }}=846 \end{gathered}$	2.42 \%
	$e^{-} e^{+} \rightarrow e^{-} \bar{v} q \bar{q}$	8963.3	$N_{e v}=2069073 ; N_{e v}^{\text {norm }}=1210407$	$\begin{gathered} N_{e v}=428 \\ N_{e v}^{\text {norm }}=250 \end{gathered}$	0.02 \% (0.2 \%)
	$e^{-} e^{+} \rightarrow q \bar{q}$	9375.3	$N_{e v}=217488 ; N_{e v}^{\text {norm }}=127230$	$N_{e v}=1$	0.0046 \%
	$\gamma \gamma \rightarrow q \bar{q} q \bar{q}$	$\begin{aligned} & 473.7 \\ & 263.7 \\ & 263.6 \\ & 126.0 \end{aligned}$	$\begin{aligned} & N_{e v}\left(\mathrm{e}_{\mathrm{B}} \mathrm{p}_{\mathrm{B}}\right)=40000 \\ & N_{e v}\left(\mathrm{e}_{\mathrm{B}} \mathrm{p}_{\mathrm{W}}\right)=30000 \\ & N_{e v}\left(\mathrm{e}_{\mathrm{W}} \mathrm{p}_{\mathrm{B}}\right)=30000 \\ & N_{e v}\left(\mathrm{e}_{\mathrm{W}} \mathrm{p}_{\mathrm{W}}\right)=13000 \end{aligned}$	$\begin{gathered} N_{e v}=0 \\ N_{e v}=1 \\ N_{e v}=0 \\ N_{e v}=282 ; N_{e v}^{n o r m}=164 \end{gathered}$	$\begin{gathered} - \\ 0.033 \% 0 \\ - \\ 1.26 \% \\ \hline \end{gathered}$
	$\gamma \gamma \rightarrow e^{-} e^{+} q \bar{q}$	$\sim 1-10^{1}$	$\begin{gathered} N_{e v}\left(\mathrm{e}_{\mathrm{B}} \mathrm{p}_{\mathrm{B}}\right)=42565 \\ N_{e v}\left(\mathrm{e}_{\mathrm{B}} \mathrm{p}_{\mathrm{W}}\right)=\text { need to estimate } \\ N_{e v}\left(\mathrm{e}_{\mathrm{W}} \mathrm{p}_{\mathrm{B}}\right)=10000 \\ N_{e v}\left(\mathrm{e}_{\mathrm{W}} \mathrm{p}_{\mathrm{W}}\right)=10000 \end{gathered}$	$\begin{gathered} N_{e v}=212 ; N_{e v}^{n o r m}=106 \\ N_{e v}\left(\mathrm{e}_{\mathrm{B}} \mathrm{p}_{\mathrm{W}}\right)=- \\ N_{e v}\left(\mathrm{e}_{\mathrm{W}} \mathrm{p}_{\mathrm{B}}\right)=0 \\ N_{e v}\left(\mathrm{e}_{\mathrm{W}} \mathrm{p}_{\mathrm{W}}\right)=0 \end{gathered}$	0.25%
星而	$\gamma \gamma \rightarrow q \bar{q}$	$\sim 10^{3}-10^{5}$	$\begin{aligned} & N_{e v}\left(\mathrm{e}_{\mathrm{B}} \mathrm{p}_{\mathrm{B}}\right)=61193 \\ & N_{e v}\left(\mathrm{e}_{\mathrm{B}} \mathrm{P}_{\mathrm{W}}\right)=61105 \\ & N_{e v}\left(\mathrm{e}_{\mathrm{W}} \mathrm{p}_{\mathrm{B}}\right)=61106 \\ & N_{e v}\left(\mathrm{e}_{\mathrm{W}} \mathrm{p}_{\mathrm{W}}\right)=63058 \end{aligned}$	$\begin{aligned} & N_{e v}\left(\mathrm{e}_{\mathrm{B}} \mathrm{p}_{\mathrm{B}}\right)=0 \\ & N_{e v}\left(\mathrm{e}_{\mathrm{W}} \mathrm{p}_{\mathrm{W}}\right)=5 \\ & N_{e v}\left(\mathrm{e}_{\mathrm{B}} \mathrm{p}_{\mathrm{W}}\right)=0 \\ & N_{e v}\left(\mathrm{e}_{\mathrm{W}} \mathrm{p}_{\mathrm{W}}\right)=0 \end{aligned}$	$\begin{gathered} - \\ 0.04 \% 0 \\ - \\ - \end{gathered}$

Flavour inclusion - background processes

$$
\gamma \gamma \rightarrow q \bar{q} q \bar{q}
$$

$$
e^{-} e^{+} \rightarrow e^{-} e^{+} q \bar{q}
$$

```
4f_production/singleZee/semileptonic/events_eL_pR/
! sze_slOdd | omega | | e-,e+ -> e-:e+,e-:e+,
d:s:b:dbar:sbar:bbar,d:s:b:dbar:sbar:bbar
! sze_slOuu | omega | | e-,e+ ->
u:c:ubar:cbar,u:c:ubar:cbar,e-:e+,e-:e+
```

$$
e^{-} e^{+} \rightarrow e^{-} \bar{v} q \bar{q}
$$

4f_production/singleW/semileptonic/events_eL_pR/ !sw_sl0qq | omega | |e-,e+ ->
u:c:ubar:cbar,d:s:b:dbar:sbar:bbar,e-:e+,nue:nuebar

$$
e^{-} e^{+} \rightarrow q \bar{q}
$$

2f_production/Z/hadronic/events_eL_pR/			
! z_h0dq	\| omega		\| e-,e+ -> d:dbar,d:dbar
! z_h0sq	\| omega		\| e-,e+ ->s:sbar,s:sbar
! z_h0bq	\| omega		\| e-,e+ -> b:bbar,b:bbar
! z_h0uq	\| omega	\| e-,e+ -> u:ubar,u:ubar	
! z_h0cq	\| omega		\| e-,e+ -> c:cbar,c:cbar

Reconstructed CPV observable for signal and background

Reconstructed signal reproduce shape, but the statistics is low (nedovoljna)

Reconstructed $\Phi \mathbf{1 a b}^{-1} @ 1$ TeV ILC

Superimposed signal and background

Superimposed signal and summed background

$$
S / B \approx 2
$$

Production request

- One of the advantages of the ILC analysis is the full simulation studies
- We have all the background samples
- We have excellent background suppression at the preselection level (will be even better after the MVA)
- All we need is a signal for CPV fit
- Minimal request is 27000 ZZ-fusion events on the generator level

Generated $\Phi 1 \mathrm{ab}^{-1} @ 1$ TeV ILC

Summary

- 1 TeV ILC offers optimal conditions to probe CPV in the HZZ vertices
- Sensitive observable ϕ (angle between production planes) is reconstructed with expected behavior, in the full simulation
- Background ϕ distribution is CPV insensitive
- Higher signal statistics is crucial for the $\psi_{C P}$ fit!
- Background is very suppressed already at the preselection level
- Negligible contamination (i.e. ~ \%o, preliminary) of the total background w.r.t signal expected after MVA

