

CPV in e⁺e⁻H (ZZ-fusion) at 1 TeV ILC

STATUS UPDATE

TATJANA AGATONVIC-JOVIN ET AL. VINCA INSTITUTE OF NUCLEAR SCIENCES, UNIVERSITY OF BELGRADE

ILD Software and Analysis Meeting, July 28, 2021

Outline

- SM-like Higgs boson as a CPV mixture of CP even and odd states
- Way to probe HVV vertices (V=Z, W) in Higgs production and decay
- Proposed method of measurement
- Higgs production in ZZ-fusion
 - Signal and background at 1 TeV ILC
 - Preselection
 - Reconstructed CPV observable for signal and background
- Production request

SM-like Higgs boson as a CPV mixture of CP even and odd states

• SM-like Higgs boson could be a mixture of scalar (*H*) and pseudo-scalar state (*A*):

 $h = H \cdot \cos \psi + A \cdot \sin \psi$

- Correlation between spin orientations of VV carries information on the Higgs CP state
- Numerous Higgs production processes at linear machines can be exploited (hZ, WW-fusion, ZZ-fusion) at various c.m. energies
- Both Higgs production and decays can be studied

Way to probe HVV vertices (V=Z, W) in Higgs production and decay

• hVV vertex (CPV at a loop level):

 $\mathscr{L}_{_{VV\!H}} \sim M_Z^2 \left(1/v + a_V^{}/\Lambda \right) Z_\mu Z^\mu h + \left(\frac{b_V^{}}{2\Lambda} \right) Z_{\mu\nu} Z^{\mu\nu} h + \left(\frac{\widetilde{b}_V^{}/2\Lambda}{2\Lambda} \right) Z_{\mu\nu} \widetilde{Z}^{\mu\nu} h$

• hff vertex (CPV at a tree level):

 $\mathscr{L}_{\rm ffH} \sim g \, \overline{f} \, (\cos \psi_{\rm CP} + i \, \gamma^5 \sin \psi_{\rm CP} \,) \, f \, h$

 Suppressed effect w.r.t. (i.e.) Higgs to ττ decay, but relatively high statistics available (number of events inclusive Higgs boson in 1 ab⁻¹ at 1 TeV ILC)

Way to probe HVV vertices (V=Z, W) in Higgs production and decay

- Information on spin orientations of VV states is contained in the angle between production (decay) planes
- Angle between planes is the angle between unit vectors orthogonal to those planes:

$$\hat{n}_1 = \frac{q_{e_i} - \times q_{e_f}}{|q_{e_i} - \times q_{e_f}|} \quad \text{and} \quad \hat{n}_2 = \frac{q_{e_i} + \times q_{e_f}}{|q_{e_i} + \times q_{e_f}|}$$

(1)

- There is more than one way (convention) to define n_1 and n_2 from 3 vectors forming the planes (1st plane: initial electron, final electron, Z_{e-} ; 2nd plane: initial positron, final positron, Z_{e+})
- Depending on the convention, orientation of n₁ and n₂ could be in the same hemisphere (angle between n₁ and n₂ smaller than 180 deg.) or in the opposite (angle between n₁ and n₂ larger than 180 deg.)
- With the definition in (1), unit vectors n_1 and n_2 share the same hemisphere

Higgs production in ZZ-fusion

- Since orientation of vectors n₁ and n₂ is 'the same', the angle between planes can be retrieved through the arccos function as:
- $\phi = a \arccos(\underline{\oplus} \hat{n}_1 \cdot \hat{n}_2)$
- Sign \pm retain natural domain of arccos function
- where a defines how the second (positron) plane is rotated w.r.t. the first (electron) plane; If it falls backwards (as illustrated) a=-1, otherwise a=1. Direction of Z in the e⁻ plane regulates the notion of direction (fwd. or back.)

•
$$a = \frac{q_{Z_e^-} \cdot (\hat{n}_1 \times \hat{n}_2)}{|q_{Z_e^-} \cdot (\hat{n}_1 \times \hat{n}_2)|}$$

Higgs decays: $H \rightarrow WW^*$ and $H \rightarrow ZZ^*$

• Unit vectors orthogonal to decay planes (one possible definition):

$$\hat{n}_1 = \frac{q_{f(V)} \times q_{\overline{f}(V)}}{\left|q_{f(V)} \times q_{\overline{f}(V)}\right|} \quad \text{and} \quad \hat{n}_2 = \frac{q_{f(V^*)} \times q_{\overline{f}(V^*)}}{\left|q_{f(V^*)} \times q_{\overline{f}(V^*)}\right|}$$

• n, and n, are now in 'the opposite' directions, to preserve correct arcos output (in the range o-180 deg.) define ϕ as:

 $\phi = a \arccos(-\hat{n}_1 \cdot \hat{n}_2)$

• where *a* defines how the second (off-shell boson V^*) plane is rotated w.r.t. the first (on-shell boson) plane; If it falls backwards (as illustrated) a = -1, otherwise a = 1. Direction of the on-shell boson (*V*) regulates the notion of direction (fwd. or back.)

•
$$a = \frac{q_V \cdot (\hat{n}_1 \times \hat{n}_2)}{|q_V \cdot (\hat{n}_1 \times \hat{n}_2)|}$$

• It is essential to distinguish between fermion and antifermion (jet-charge)

• Examples of possible definitions of n₁ and n₂ in ZZ-fusion:

1.
$$\phi_1 = \arccos(+\hat{n}_1 \cdot \hat{n}_2)$$
 where $\hat{n}_1 = \frac{q_{e_i} - \times q_{e_f} - 1}{|q_{e_i} - \times q_{e_f} - 1|}$ and $\hat{n}_2 = \frac{q_{e_i} + \times q_{e_f} + 1}{|q_{e_i} + \times q_{e_f} + 1|}$

2.
$$\phi_2 = \arccos(-\hat{n}_3 \cdot \hat{n}_4)$$
 where $\hat{n}_3 = \frac{q_{Z_e} - \times q_{e_i}}{|q_{Z_e} - \times q_{e_i}|}$ and $\hat{n}_4 = \frac{q_{Z_e} - \times q_{e_f}}{|q_{Z_e} - \times q_{e_f}|}$

3.
$$\phi_3 = \arccos(+\hat{n}_5 \cdot \hat{n}_6)$$
 where $\hat{n}_5 = \frac{q_{Z_e} - \times q_{e_i}}{|q_{Z_e} - \times q_{e_i}|}$ and $\hat{n}_6 = \frac{q_{Z_e} + \times q_{e_f} + q_{e_f}}{|q_{Z_e} + \times q_{e_f} + q_{e_f}|}$

• No matter how we define a unit vector orthogonal to a production (decay) plane, consistently defined ϕ leads to the same results (in production and decay).

ϕ distributions in Higgs decays to WW^* and ZZ^*

S. Bolognesi et al.,

On the spin and parity of a single produced resonance at the LHC, arXiv:1208.4018 [hep-ph] for Higgs to ZZ* and WW* decays

Proposed method

- Consider $H \rightarrow bb$ and $H \rightarrow WW \rightarrow 4$ jets decays
 - 1. Cover most of the Higgs width (~ 80 %)
 - 2. Avoid high cross-section $e^+e^- \rightarrow e^+e^-\gamma$ background present in inclusive reconstruction
 - 3. Combine results
- Select ZZ-fusion (signal is mixed with HZ) using $m (e^+e^-)$
- Isolate 2 leptons (e^+e^-)
- Reconstruct ϕ
- Suppress background with MVA
- Describe ϕ of the signal and background with PDFs
- Reconstruct ϕ of the signal from pseudo-data (S + B)
- Fit ψ_{CP} from the ϕ distribution
- Repeat pseudo experiments
- Combine channels

Higgs production in ZZ-fusion

- WHIZARD v1.95, 500GeV/0.5 ab⁻¹, 1TeV/ 1 ab⁻¹, 1.4 TeV/1 ab⁻¹, unpolarized
- t-channel process, electrons (spectators) are scattered forward not full statistics available in the tracker
- Due to this fact 1 TeV is the optimal energy for this study (already at i.e. 1. 4 TeV the number of events with both electron is the tracker is ~1/5 of the available statistics). At 500 GeV i.e. x-section for ZZ fusion is relatively small (7.2 fb) and number of events in the tracker is order of magnitude smaller than at 1 TeV
- Around 8-9.10³ events with both e+ and e- in the tracker in 1 ab^{-1} at 1 TeV ILC

Preselection

- ILC sample at 1 TeV, normalized to 1 ab⁻¹, with LR polarization (-1, 1), normalized to (-0.8, +0.3) as:
- $W_{\text{pol}} = \left(\frac{1-P_{e_{-}}}{2}\right) \cdot \left(\frac{1+P_{e_{+}}}{2}\right) = \left(\frac{1-(-0.8)}{2}\right) \cdot \left(\frac{1+0.3}{2}\right) = 0.585$
- Preselection: find 2 isolated electrons (e^+e^-)
- Goal: reduce high cross-section backgrounds
- Requirements:
 - Track energy: $E_{\text{track}} > 100 \text{ GeV}$ spectators are energetic (3.3% loss)
 - Impact parameter: $d_0 < 0.1$, $z_0 < 1.0$
 - Ratio of deposition: $R_{cal} > 0.95$
 - Optimize cone vs. track energy

Isolation curve: $E_{\text{cone}}^2 < 40 E_{\text{track}} \text{ GeV} - 20 \text{ GeV}^2$

Signal and considered available background samples - Preselection efficiencies -

1 TeV/1 ab ⁻¹ /pol(-80%, +30%)	Sample	σ [fb]	Input	Output	Efficiency [%]
Signal:	$e^+e^- \rightarrow e^+e^-H(H \rightarrow b\bar{b})$	28.6	$N_{ m reco}^{ m tot} = 6012; N_{ m reco}^{ m norm} = 16713$ $N_{ m signal} = 1121; N_{ m signal}^{ m norm} = 3116$	$N_{ m sig/iso} = 873$ $N_{ m sig/iso}^{ m norm} = 2426$	78 %
Background samples:	$e^-e^+ ightarrow e^-e^+q\bar{q}$	2577.3	$N_{ev} = 59793; N_{ev}^{norm} = 34978$	$N_{ev} = 1447$ $N_{ev}^{norm} = 846$	2.42 %
	$e^-e^+ ightarrow e^- \bar{\nu} q \bar{q}$	8963.3	$N_{ev} = 2069073; N_{ev}^{norm} = 1210407$	$\begin{array}{l} N_{ev} = 428 \\ N_{ev}^{norm} = 250 \end{array}$	0.02 % (0.2 ‰)
	$e^-e^+ o q \overline{q}$	9375.3	$N_{ev} = 217488; N_{ev}^{norm} = 127230$	$N_{ev} = 1$	0.0046 ‰
	$\gamma\gamma o q ar q q ar q$	473.7 263.7 263.6 126.0	$N_{ev} (e_B p_B) = 40000$ $N_{ev} (e_B p_W) = 30000$ $N_{ev} (e_W p_B) = 30000$ $N_{ev} (e_W p_W) = 13000$	$N_{ev} = 0$ $N_{ev} = 1$ $N_{ev} = 0$ $N_{ev} = 282; N_{ev}^{norm} = 164$	_ 0.033 ‰ _ 1.26 %
	$\gamma\gamma ightarrow e^- e^+ q \overline{q}$	$\sim 1 - 10^{1}$	$N_{ev} (e_B p_B) = 42565$ $N_{ev} (e_B p_W) = need to estimate$ $N_{ev} (e_W p_B) = 10000$ $N_{ev} (e_W p_W) = 10000$	$\begin{split} N_{ev} &= 212; N_{ev}^{norm} = 106 \\ N_{ev}(e_{\rm B}p_{\rm W}) &= - \\ N_{ev}(e_{\rm W}p_{\rm B}) &= 0 \\ N_{ev}(e_{\rm W}p_{\rm W}) &= 0 \end{split}$	0.25 %
	$\gamma\gamma o q\overline{q}$	$\sim 10^3 - 10^5$	$N_{ev} (e_B p_B) = 61193$ $N_{ev} (e_B p_W) = 61105$ $N_{ev} (e_W p_B) = 61106$ $N_{ev} (e_W p_W) = 63058$	$N_{ev} (e_B p_B) = 0$ $N_{ev} (e_W p_W) = 5$ $N_{ev} (e_B p_W) = 0$ $N_{ev} (e_W p_W) = 0$	 0.04 ‰

Flavour inclusion – background processes

 $\gamma\gamma \rightarrow q \bar{q} q \bar{q}$

aa_4f_production/aa_4f/E1000-B1b_ws. Paa_xxyy.Gwhizard-1.95.eB.pB.I35653/ whizard.aa xxyy o.out

!	WHIZARD	versio	on	1.95	(Feb	25	2010)
1	Process	s aa_xx	куу	_0:			
1	gamma	gamma	->	u	a-u	d	a-d
1	gamma	gamma	->	u	a-u	d	a-s
1	gamma	gamma	->	u	a-u	d	a-b
1		gamma	->	u	a-u	S	a-d
		gamma	->	u	a-u	S	a-s
1		gamma	->	u	a-u	S	a-b
1		gamma	->	u	a-u	b	a-d
		gamma	->	u	a-u	b	a-s
	2	gamma	->	u	a-u	b	a-b
		gamma	->	u	a-c	d	a-d
		gamma	->	u	a-c	d	a-s
		gamma	->	u	a-c	d	a-b
		gamma	->	u	a-c	S	a-d
-		gamma	->	u	a-c	S	a-s
-		gamma	->	u	a-c	s	a-b
	2	gamma	->	u	a-c	b	a-d
-		gamma	->	u	a-c	b	a-s
1	2	gamma	->	u	a-c	b	a-b
1	2	gamma	->	С	a-u	d	a-d
1		gamma	->	С	a-u	d	a-s
1		gamma	->	C	a-u	d	a-b
1		gamma	->	C	a-u	S	a-d
-		gamma	->	C	a-u	S	a-s
-		gamma	->	C	a-u	S	a-b
-	2	gamma	->	C	a-u	b	a-d
		gamma	-> ->	C C	a-u a-u	b b	a-s a-b
		gamma	->			d	a-d
		gamma gamma	->	c	a-c a-c	d	a-u a-s
1		gamma	->		a-c	d	a-b
j		gamma	->	c	a-c	s	a-d
j		gamma	->		a-c	s	a-s
j		gamma	->		a-c	s	a-b
- i		gamma	->	c	a-c	b	a-d
j		gamma	->	c	a-c	b	a-s
j	-	gamma	->	c	a-c	b	a-b
	gamma	Januaria	-	~		~	

$e^-e^+ \rightarrow e^-e^+q\bar{q}$

4f_production/singleZee/semileptonic/events_eL_pR/				
! sze_sl0dd	omega	e-,e+ -> e-:e+,e-:e+,		
d:s:b:dbar:sbar:bbar,d:s:b:dbar:sbar:bbar				
! sze_sl0uu	omega	e-,e+ ->		
u:c:ubar:cbar,u:c:ubar:cbar,e-:e+,e-:e+				

 $e^-e^+ \rightarrow e^- \bar{\nu} q \bar{q}$

4f_production/singleW/semileptonic/events_eL_pR/ ! sw_slOqq | omega | | e-,e+ -> u:c:ubar:cbar,d:s:b:dbar:sbar:bbar,e-:e+,nue:nuebar

$e^-e^+ \to q \overline{q}$

2f_production/Z/hadronic/events_eL_pR/

! z_h0dq	omega	e-,e+ -> d:dbar,d:dbar
! z_h0sq	omega	e-,e+ -> s:sbar,s:sbar
! z_h0bq	omega	e-,e+ -> b:bbar,b:bbar
! z_h0uq	omega	e-,e+ -> u:ubar,u:ubar
! z_h0cq	omega	e-,e+ -> c:cbar,c:cbar

Reconstructed CPV observable for signal and background

Reconstructed signal reproduce shape, but the statistics is low (nedovoljna)

0

3

2

Superimposed signal and background

Superimposed signal and summed background

 $S/B \approx 2$

-3

-2

-1

Production request

- One of the advantages of the ILC analysis is the full simulation studies
- We have all the background samples
- We have excellent background suppression at the preselection level (will be even better after the MVA)
- All we need is a signal for CPV fit
- Minimal request is 27000 ZZ-fusion events on the generator level

Summary

- 1 TeV ILC offers optimal conditions to probe CPV in the HZZ vertices
- Sensitive observable ϕ (angle between production planes) is reconstructed with expected behavior, in the full simulation
- Background ϕ distribution is CPV insensitive
- Higher signal statistics is crucial for the ψ_{CP} fit!
- Background is very suppressed already at the preselection level
- Negligible contamination (i.e. ~ ‰, preliminary) of the total background w.r.t signal expected after MVA

