Effects from triple Higgs couplings in the 2HDM at e^+e^- colliders F. Arco, S. Heinemeyer and M.J. Herrero

Based on arxiv:2005.10576 and arxiv:2106.11105, published in EPJC

Instituto de Física Teórica UAM-CSIC

ILC-IDT WG3 - Phys Open Meeting, 16-17th December 2021

Universidad Autónoma de Madrid

The shape of the SM Higgs potential is **NOT** measured experimentally and there is not a precise measurement of the Higgs self-coupling

Actual measuremen	ts on $\kappa_{\lambda} = \lambda_{hhh} / \lambda_{hhh}^{SM}$	Prospects on $\kappa_{\lambda} = \lambda_{hhh} / \lambda_{hhh}^{SM}$			
ATLAS	CMS	ILC	CLIC		
[-2.3, 10.3] at 95% CL	[-3.3, 8.5] at 95% CL	500GeV: ±27% at 68% CL 1TeV: ±10% at 68% CL	3+1.4 TeV combination: -8% and 11% at 68% CI		
[ATLAS-CONF-2019-049]	[arXiv:2011.12373, CMS- HIG-19-018]	[arXiv:1910.11775]	[arXiv:1901.05897]		

All the above analysis assume the SM couplings

Future e^+e^- colliders will play a crucial role to measure λ_{hhh} , but...

Fran Arco (UAM-IFT)

Motivation

• There are analysis for FCC-hh [arXiv.2004.03505] and ILC [J. List et al., preliminary] with $\kappa_{\lambda} \neq 1$

There is room for SM deviations in the scalar sector !!!

Fran Arco (UAM-IFT)

(More) motivation

In the context of the 2HDM (type I and II), triple Higgs couplings $\lambda_{h_ih_ih_k}$, can be large while respecting all the relevant constraints (Eur. Phys. J.C 80 (2020) 9, 884, [arXiv2005.10576])

 $\lambda_{h_ih_ih_k}$ can affect the di-Higgs production at tree level

Production of hH, HH and AA at both channels were studied at [arxiv:2106.11105]

The Two Higgs Doublet Model (2HDM)

POTENTIAL:

Adding a second Higgs doublet to the SM \implies 5 physical Higgs bosons: h, H, A and H^{\pm} $V = m_{11}^2 (\Phi_1^{\dagger} \Phi_1) + m_{22}^2 (\Phi_2^{\dagger} \Phi_2) - m_{12}^2 (\Phi_1^{\dagger} \Phi_2 + \Phi_2^{\dagger} \Phi_1) + \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2$ $+\lambda_3(\Phi_1^{\dagger}\Phi_1)(\Phi_2^{\dagger}\Phi_2) + \lambda_4(\Phi_1^{\dagger}\Phi_2)(\Phi_2^{\dagger}\Phi_1) + \frac{\lambda_5}{2}[(\Phi_1^{\dagger}\Phi_2)^2 + (\Phi_2^{\dagger}\Phi_1)^2]$

- CP conservation
- Z_2 symmetry to avoid FCNC: softly broken by m_{12}^2

NPUT PARAMETERS:

 $m_h \ (= 125 \text{ GeV}), \ m_H, \ m_A, \ m_{H^{\pm}}, \ \tan\beta := v_2/v_1$

Alignment limit: $c_{\beta-\alpha} \rightarrow 0$, the SM interactions for h are recovered

Fran Arco (UAM-IFT)

• 4 possible Yukawa structures: we only consider 2HDM type I (and type II)

$$v_1$$
, $\cos(\beta - \alpha) \equiv c_{\beta - \alpha}$ and m_{12}^2

CONSTRAINTS

- Electroweak precision data, T parameter: motivates scenarios with degenerate masses
 - For us $m_H = m_A = m_{H^{\pm}} \equiv m$
- Tree level unitarity and potential stability: $m_{12}^2 = m_H^2 \cos^2 \alpha / \tan \beta$ helps reach large masses

Fran Arco (UAM-IFT)

Triple Higgs Couplings (THC)

FINAL ALLOWED RANGES: TYPE I $\kappa_{\lambda} \in [-0.5, 1.5]$ $\kappa_{\lambda} \in [0.0, 1.0]$ $\lambda_{hhH} \in [-1.4, 1.5] \quad \lambda_{hhH} \in [-1.6, 1.8]$ $\lambda_{hHH} \in [0, 15]$ $\lambda_{hHH} \in [0, 15]$ $\lambda_{hAA} \in [0, 16]$ $\lambda_{hAA} \in [0, 16]$

- Collider measurements of the 125 GeV Higgs
 - Close to $\cos(\beta \alpha) = 0$, specially for type II
- **BSM Higgs searches** in LEP, TeVatron and LHC
- Flavor observables: $BR(B \rightarrow X_{s}\gamma)$ and $BR(B_s \rightarrow \mu\mu)$ 2HDMC, HiggsBounds,

HiggsSignals and superISO were used

Experimental expectation for κ_{λ} at ILC

Sensitivity to κ_{λ} for the di-Higgs production at HL-LHC and ILC, also for $\kappa_{\lambda} \neq 1$:

- Allowed ranges by type I and II are included
- (no BSM channels are included)

Fran Arco (UAM-IFT)

• ILC 500 + ILC 1000 is better to measure κ_{λ} except for $\kappa_{\lambda} \sim 0$, where HL-LHC competes

Z channel \rightarrow decreases with the energy $\nu\bar{\nu}$ channel \rightarrow increases with the energy (VBF topologies!) Fran Arco (UAM-IFT)

- (contains λ_{hhH}) and A (without THC)
- (because $m_H = m_A$)

• hhZ and $hh\nu\bar{\nu}$: ~ 3 times the SM due to resonant diagrams mediated by H

• hHZ and $hH\nu\bar{\nu}$: A mediated diagrams are the dominant contribution but we can still have THC sensitivity at large energies

• $HH\nu\bar{\nu} \sim AA\nu\bar{\nu}$: dominated at large energies by λ_{hHH} (λ_{hAA}) if it is large enough Madgraph was used

- XS presented in some benchmark planes with large (and allowed) THC (inspired from [arXiv:2005.10576])
 - Plane $c_{\beta-\alpha} \tan\beta$: Type I with m = 1 TeV $m_{12}^2 = m_H^2 \cos^2 \alpha / \tan \beta$
 - Plane $c_{\beta-\alpha} m$: Type I with $\tan \beta = 10$ and $m_{12}^2 = m_H^2 \cos^2 \alpha / \tan \beta$
- ALL diagrams included (no NWA!)
- Access to THC via XS distributions on the invariant mass of the final *hh* pair
- We studied effects from THC in m_{hh} for 5 benchmark points (BP) with a wide range of BS Higgs masses

Fran Arco (UAM-IFT)

MadGraph, FeynRules, 2HDMC and ROOT were used

)	We	We use the projected luminosities and cente mass for ILC and CLIC:							
			Collider		$\overline{s} [\text{GeV}]$	$\mid \mathcal{L}_{\mathrm{int}} \ [\mathrm{ab}^{-1}]$			
and		ILO			500	4			
		ILO	2		1000	8			
			CLIC		1500	2.5			
		CLI	CLIC		3000	5			
	Point	Type	$\mid n$	ı	$\tan eta$	$c_{eta-lpha}$	m_{12}^2		
	BP1	Ι	30	0	10	0.25	Eq. (
	BP2	Ι	50	0	7.5	0.1	3200		
	BP3	Ι	600		10	0.2	Eq. (
SM :	BP4	I	100	00	8.5	0.08	Eq. (
	BP5	II	65	0	1.5	0.02	1000		
ules, 2HE	DMC	(Eq. (8) $\rightarrow m_{12}^2 = m_H^2 \cos^2 \alpha / \tan \beta$)							

hh production

Three main effects different from the SM:

Deviations from $\kappa_{\lambda} = 1$

Diagrams with κ_{λ} has a positive interference in the Z channel and negative in the neutrino channel

2. *H* mediated resonant diagrams (contains λ_{hhH})

$$e^+e^- \rightarrow H^*Z \rightarrow hhZ (\rightarrow hh\nu\bar{\nu})$$

$$e^+e^- \rightarrow H^*\nu_e \bar{\nu}_e \rightarrow hh\nu_e \bar{\nu}_e$$

3. *A* mediated resonant diagrams (no sensitivity to THC)

$$e^+e^- \rightarrow hA^* \rightarrow hhZ \ (\rightarrow hh\nu\bar{\nu})$$
 (More respectively) (More respectively) (More respectively)

If $c_{\beta-\alpha} = 0$ we recover the SM prediction

Fran Arco (UAM-IFT)

relevant for channel)

diagrams with $Z \rightarrow \nu \bar{\nu}$ also included

hh production, ILC 500GeV (type I)

- At this energy, hhZ is the most important channel
- $c_{\beta-\alpha}$ $\tan\beta$ plane: *H* and *A* are too heavy \implies we see mainly the effect of κ_{λ}
- In the $c_{\beta-\alpha} m$ plane, the H (λ_{hhH}) and A (no THC) resonances manifest for low masses
 - The enhancement wrt the SM in the neutrino channel is larger, but the absolute XS is smaller

Fran Arco (UAM-IFT)

hh production, ILC 500GeV, THC dependence (type I)

Cross section distribution on the invariant mass of *hh*:

Larger influence of κ_{λ} appears at the threshold of m_{hh} (light blue line)

Fran Arco (UAM-IFT)

• *H* resonance when $m_{hh} \sim m_H = 300 \text{ GeV}$ (dark

- blue line): information from λ_{hhH}
- Plateau in the yellow line wrt the SM (black line) due to the Aresonant diagrams
- The effect from κ_{λ} and λ_{hhH} can be "mixed" if m_H is small

hh production, THC dependence, ILC 1TeV (type I)

Cross section distributions on m_{hh} for

Point	Type	$m \mid aneta \mid c_{\mu}$		$c_{eta-lpha}$	m_{12}^2	
BP1	Ι	300	10	0.25	Eq. (8)	
BP2	Ι	500	7.5	0.1	32000	
BP3	Ι	600	10	0.2	Eq. (8)	
BP4	Ι	1000	8.5	0.08	Eq. (8)	
(Eq. (8) $\to m_{12}^2 = m_H^2 \cos^2 \alpha / \tan \beta$)						

- Effect from κ_{λ} : the region of low invariant mass
- Effect from λ_{hhH} : *H* resonant peak at $m_{hh} \sim m_H$
- Extra events due to the A resonance

hh production, CLIC 3TeV (type I)

- At this energy, $hh\nu\bar{\nu}$ channel is the most important channel
- *hhZ* is very dominated by the *A* mediated diagrams, while in $hh\nu\bar{\nu}$ the H mediated diagrams are more important
- In the neutrino channel we can find very large XS: $\sim 10\sigma_{\rm SM} = 9$ fb at low masses and $\sim 3\sigma_{\rm SM}$ for a wide range of masses

hh production, CLIC 3TeV, THC dependence (type I)

Cross section distributions on m_{hh} for

					1010
Point	Type	m	$\tan eta$	$c_{\beta-lpha}$	m_{12}^2
BP1	Ι	300	10	0.25	Eq. (8)
BP2	Ι	500	7.5	0.1	32000
BP3	Ι	600	10	0.2	Eq. (8)
BP4	Ι	1000	8.5	0.08	Eq. (8)
(Eq. (8) $\to m_{12}^2 = m_H^2 \cos^2 \alpha / \tan \beta$)					

- Effect from κ_{λ} : the region of low invariant mass
- The neutrino channel can access to the *H* resonant peak (i.e. to λ_{hhH}) for a wide range of m_H and $c_{\beta-\alpha}$

which collider and channel are best suited to access to λ_{hhH} ?

4-*b***jets** in *hh* **production:** λ_{hhH} **"sensitivity"**

We define a theoretical "sensitivity" R with an estimation of the final 4-bjets events that could be detected at a collider close to the H resonance:

where $\bar{N} = N \times \mathscr{A} \times \epsilon_h^4$ with N the number of total 4-bjets events, $\epsilon_h \sim 0.8$ the b-tagging efficiency and $\mathscr{A} = N_{\rm cuts}/N_{\rm no\ cuts}$ is the acceptance of the collider

 $p_T^b > 20 \text{ GeV}, |\eta^b| < 2, \Delta R_{bb} > 0.4, p_T^Z > 20 \text{ GeV}, E_T > 20 \text{ GeV}$ Cuts:

Fran Arco (UAM-IFT)

 N^R are events from the Hmediated diagrams and N^{C} are events from diagrams without THC

"Sensitivity" to λ_{hhH} at hhZ and $hh\nu\bar{\nu}$

More sensitivity to λ_{hhH} (i.e. larger *R*) in $hh\nu\bar{\nu}$, specially at <u>CLIC 3 TeV</u> But good prospects for <u>BP1 at ILC</u> at both channels

hhZ	$\sqrt{s} [\text{GeV}]$	$\sigma_{ m 2HDM} \ / \ \sigma_{ m SM} \ [{ m fb}]$	\bar{N}^R_{4bZ} / \bar{N}^C_{4bZ} / $\bar{N}^{\rm SM}_{4bZ}$	R_{4bZ}	hh uar u	$\sqrt{s} [\text{GeV}]$	$\sigma_{ m 2HDM} \ / \ \sigma_{ m SM} \ [{ m fb}]$	$\bar{N}^R_{4bE_T}$ / $\bar{N}^C_{4bE_T}$ / $\bar{N}^{\rm SM}_{4bE_T}$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	500	1.063 / 0.158	193 / 10 / 3	58		500	0.404 / 0.034	119 / 4 / 1	
	1000	0.913 / 0.120	206 / 1 / 4	205	BP1	1000	2.391 / 0.097	1510 / 24 / 0	
	1500	$0.493 \ / \ 0.077$	22 / < 1 / 1	-		1500	4.423 / 0.239	794 / 13 / 2	
	3000	0.147 / 0.033	1 / < 1 / < 1	-		3000	9.098 / 0.819	2425 / 46 / 6	
1000 BP2 1500 3000	1000	0.156 / 0.120	20 / 1 / 1	19	BP2	1000	0.234 / 0.097	79 / 3 / 1	
	1500	0.106 / 0.077	4 / < 1 / < 1	-		1500	0.625 / 0.239	70 / 3 / 1	
	3000	0.042 / 0.033	< 1 / < 1 / < 1	-		3000	1.850 / 0.819	282 / 28 / 9	
1000 BP3 1500 3000	0.254 / 0.120	29 / 5 / 2	11		1000	0.208 / 0.097	85 / 5 / 3		
	1500	0.218 / 0.077	8 / 1 / < 1	7	BP3	1500	0.709 / 0.239	111 / 5 / 3	
	3000	0.086 / 0.033	1 / < 1 / < 1	-		3000	2.422 / 0.819	577 / 30 / 11	
BP4	1500	0.075 / 0.077	1 / < 1 / < 1	-	BP4	1500	0.428 / 0.239	4 / < 1 / < 1	
	3000	0.038 / 0.033	< 1 / < 1 / < 1	-		3000	1.523 / 0.819	72 / 4 / 3	

Fran Arco (UAM-IFT)

more details in [arxiv:2106.11105]

16

Summary & Conclusions

- The *hh* production is studied at e^+e^- colliders in the 2HDM type I, with the aim to find effects coming from triple Higgs couplings (THC)
 - Two production channels were studied: $e^+e^- \rightarrow hhZ$ and $e^+e^- \rightarrow hh\nu\bar{\nu}$
- Only sizable distortions at type I (type II is very constrained)
 - From κ_{λ} , at low invariant mass of the *hh* pair, similar to what happens in the SM
 - From λ_{hhH} , through a resonant peak due to the H boson:
 - A study of the final 4 b-jets events shows that $hh\nu\bar{\nu}$ channel is better at large energies (specially CLIC 3TeV)
 - Large #events at ILC energies for a light H at both channels
- Effects from THC on $hH\nu\bar{\nu}$, $HH\nu\bar{\nu}$ and $AA\nu\bar{\nu}$ can be seen at large energies (CLIC 3TeV), see [arxiv:2106.11105]!

Fran Arco (UAM-IFT)

Thanks for your attention :) Questions??

Back-up, Feynman Rules with THC

$$m_h^2 + m_H^2 \left(-c_{\beta-\alpha}^2 + 2\cot 2\beta c_{\beta-\alpha} s_{\beta-\alpha} + s_{\beta-\alpha}^2 \right) \right)$$

$$s_{\beta-lpha}^2\Big) - 2\bar{m}^2\left(-2c_{\beta-lpha}^2 + 3\cot 2\beta c_{\beta-lpha}s_{\beta-lpha} + s_{\beta-lpha}^2
ight)\Big)$$

Back-up, Ahihihk

- The $HH \sim AA$ production can be non-zero even in the alignment limit ($c_{\beta-\alpha} \rightarrow 0$)
- Only sizable cross sections inside the allowed region for the neutrino channel
 - Not larger than 0.5 fb
- The sizable cross sections comes from the effect of λ_{hHH} (λ_{hAA})
 - Effects from $\lambda_{HHH} (\lambda_{HAA})$ could be important only for larger values of $c_{\beta-\alpha}$

$HH \sim AA$ production, CLIC 3TeV, THC dependence

Cross section distribution on the invariant mass of HH:

 $\sigma(e^+e^- \rightarrow HHZ), \sqrt{s} = 3000 \text{ GeV}$

Very small XS and number of events in the HHZ channel

Fran Arco (UAM-IFT)

Dominant effect in $HH\nu\bar{\nu}$ comes from λ_{hHH} and it is responsible for almost all the cross section

$HH \sim AA$ production, CLIC 3TeV (type II) $\sigma(HH\nu\bar{\nu}), \sqrt{s} = 3000 \text{ GeV}$ $\sigma(HHZ), \sqrt{s} = 3000 \text{ GeV}$

Production cross sections wrt the SM at ILC 500 GeV for HHZ (left) and $HH\nu\bar{\nu}$ (right)

- In type II, due to the collider constraints, only $HH \sim AA$ production is relevant
- Only sizable XS, not larger than 0.5 fb, inside the allowed region for the neutrino channel
- Sizable XS comes from the effect of $\lambda_{hHH} (\lambda_{hAA})$
 - XS is larger at low m_{12}^2 , that is the region where λ_{hHH} is larger!
- In type I we can obtain similar XS (in other regions of the parameter space)

$HH \sim AA$ production, THC dependence, CLIC 3TeV(type II)

In type II only $HH\nu\bar{\nu} \sim AA\nu\bar{\nu}$ production is relevant (because of collider constraints)

• XS is larger at low m_{12}^2 , that is the region • The dominant effect in $HH\nu\bar{\nu}$ comes from λ_{hHH} (green line) and it is responsible for where λ_{hHH} is larger almost all the cross section

Fran Arco (UAM-IFT)

Type II m = 650 GeV $\tan \beta = 1.5$ $c_{\beta-\alpha} = 0.02$ $m_{12}^2 = 10000 \text{ GeV}^2$

In both type I and type II, we will see a sizable XS in $HH\nu\bar{\nu}$ where λ_{hHH} can large (if m_H is light enough)

• Height of the resonance depends on λ_{hhH}

• For large $c_{\beta-\alpha}$ the resonance is wider because Γ_H is larger

Fran Arco (UAM-IFT)

 $\lambda_{hhH} > 0$: More events at the left of the peak than at the right

 $\lambda_{hhH} < 0$: More events at the right of the peak than at the left

hH production, CLIC 3TeV (type I)

- The *hH* production channels disappear in the alignment limit
- Very strong contribution from resonant A diagrams in the *hHZ* channel
- In the neutrino channel, the effects from A mediated diagrams mixes with the effects coming from the THC (for this process: λ_{hhH} and λ_{hHH})

hH production, CLIC 3TeV, THC dependence (type I)

Cross section distribution on the invariant mass of hH:

 $\sigma(e^+e^- \rightarrow hHZ), \sqrt{s} = 3000 \text{ GeV}$

Large "steps" in both channels coming from A resonant diagrams

Fran Arco (UAM-IFT)

 $\sigma(e^-e^+ \rightarrow hH \nu \overline{\nu}), \ \sqrt{s} = 3000 \text{ GeV}$

Type I

$$m = 600 \text{ Ge}$$

 $\tan \beta = 10$
 $c_{\beta-\alpha} = 0.2$
 $m_{12}^2 = m_H^2 \cos^2 \alpha$

Large effects from λ_{hhH} (dark blue line) and λ_{hHH} (green line) at low m_{hH} only in the neutrino channel at the m_{hH} threshold

The combined effect of both THC (purple line) depends on their relative sign

