

Schematic overview

Implementation

Full simulation study at $\sqrt{s} = 250$ GeV

(MC2020 ILD mass production).

- \checkmark $\sqrt{s} = 250$ GeV ideal for the Higgsstrahlung process.
- Considered backgrounds: Standard Model (SM) processes with 2 or 4 fermions in the final state.
- ≥ 2400 k simulated events/SM Higgs decay mode.
- Polarized initial beams: 80% left (30% right) polarized electron (positron) beam.
- \blacktriangleright 2000 fb⁻¹ integrated luminosity.

Toy validation

Draw toys from Multinomial (N_{data} fixed). The histogram stores the $H \rightarrow b\bar{b}$ branching ratio at the fit minimum. The distribution can be described by a Gaussian with mean and varaince obtained from the fit on the expected event counts.

A combined fit to the Higgs branching ratios at ILD

Jonas Kunath, on behalf of the ILD concept group

Laboratoire Leprince-Ringuet, École Polytechnique

2. Sample creation 1. Event selection Events without the part identified as from the recoiling Z boson. Create bins inspired by the expected decays, with established tools. ► E.g. bb_tight: No Isolated leptons or photons in event. Require LCFIPlus btag 1 > 0.8 for event clustered into two jets. ► Final state radiation: Add 3. Branching ratio (BR) fit photons with BRs from minimization of $\vec{S} = M \cdot \vec{B} = \vec{f}(\vec{B})$ through MINUIT/iminuit. $\cos\theta_{l\gamma} > 0.99.$ Selection cuts shown on $\blacktriangleright \vec{S}$: The signal counts per category (S = data - bkg). the right. ► M: The probability matrix from simulations per bkg and decay mode. $\blacktriangleright \vec{B}$: The target: branching ratios. Use e.g. the SM BRs as fit starting 2f leptonic 4f leptonic 4f semileptonic other higgs values. Cost function: Multinomial log-likelihood. $-\ln \mathcal{L} = -N_{\text{data}} \sum_{i} S_{i} \ln \left(\sum_{j} M_{ij} B_{j} \right).$ References -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 COSθ7 0 - 0.75 - 0.50 - 0.25 0.00 0.25 0.50 0. $COS<math>\theta_{miss}$ ► The International Linear Collider: Technical Design Report (2013). ILD preliminar --- efficiency ► The International Large Detector: Interim Design Report: arXiv:2003.01116. → purity → eff * pur

Solely information from recoiling Z boson is used: Independent of Higgs decay. Currently only with $Z \to \mu^+ \mu^-$, $Z \to e^+ e^-$ Higgsstrahlung events as signal channels.

- Golden channels due to recoil mass method, $M_{\rm recoil}^2 = s + M_Z^2 - 2\sqrt{s} \cdot E_Z.$
- IsolatedLeptonTagger: Lepton pair with same type and opposite charge.
- Extraction of major branching single analysis. \rightarrow Full statistic correlation matrix.
- \blacktriangleright Independent of σ_{ZH} and σ_{VV-1}
- Can automatically adapt to BR drastically different from SM.

	SM BR $\sigma_{ m stat}$
$H \rightarrow bb$	57.72 0.86
$H \to WW$	21.76 1.34
$H \to gg$	8.55 1.25
$H \to \tau \tau$	6.20 1.30
$H \to cc$	2.72 0.55
$H \to ZZ$	2.62 1.93
$H \to \gamma \gamma$	0.24 0.17
$H \to Z\gamma$	0.17 0.35
$H \to \mu \mu$	0.03 0.14

Table 1: Fit on the expected event counts. In percent. ILD preliminary.

		Correlations									
ratios from	H→bb -		.196	.196	081	.022	D 473	001	<u></u> 45	.029	
cal	H→WW -	.196		220	533	060	269	.006	.014	005	
	H→gg -	.196	220		.211	098	615	001	026	.049	
fusion. R scenarios	Η→ττ -	081	533	.211		053	132	034	077	.016	
	H→cc -	.022	060	098	053		180	.004	003	.015	
	H→ZZ -	475	269	615	132	180		.002	032	063	
	Н→үү -	001	.006	001	034	.004	.002		026	.000	
	H→Zγ -	045	.014	026	077	003	032	026		010	
at	H→µµ -	.029	005	.049	.016	.015	063	.000	010		
86		- dd≁H	- WW↔H	- H→gg	- דל	H→cc -	- ZZ←H	-	- γΣ≁H	- חµ+H	
2 /											

0 0.25 0.50 0.75 1.00 1.25 1.50 1. $|\cos\theta_z - \cos\theta_{miss}|$

Figure 1: Statistical correlations from NLL minimization.

Results

Figure 3: Higgs branching ratios and their uncertainty (assuming expected/SM values).