A brief report on news from SUSY2021: DARK SHOWERS

K. Hidaka Tokyo Gakugei University

References

"EXPLORING FARTHER WITH LONG-LIVED PARTICLES"
J. Shelton

SUSY 2021, virtual Beijing Aug. 25, 2021

EXPLORING FARTHER WITH LONG-LIVED PARTICLES

Jessie Shelton UIUC

SUSY 2021, virtual Beijing Aug. 25, 2021

LOOKING FOR LONG-LIVED PARTICLES

➤ Exciting rapid development in LLP searches!

interfaces with dedicated LLP detectors

- Non-trivial evolution in a hidden sector: high-multiplicity final states
 - confining hidden sectors, long cascade decay chains
- Arise naturally in many models:
 - solutions to the hierarchy problem

[Chacko, Goh, Harnik; Craig, Katz, Strassler, Sundrum; Craig, Knapen, Longhi, Strassler; Curtin, Verhaaren; ...]

dark matter theories

[Bai, Schwaller; Hochberg, Kuflik, Murayama, Volansky, Wacker; Francis, Hudspith, Lewis, Tulin; ...]

generic possibility for BSM physics

- Characteristic features of dark shower events:
 - variable and potentially large object multiplicity
 - non-SM-like distributions of energy, flavor
 - often non-isolated final state objects
 - hierarchy of lifetimes
- Long lifetimes arise from hierarchies of scales, small mass splittings, approximate symmetries

 Detector-scale lifetimes for at least one species are thus generic

- Semi-visible jets: prompt + detector-stable
 - Jetty events, O(1) fraction of particles escape the detector
 - realization: Z'-mediated pair production of dark quarks
 - dark pions: flavor symmetry protects 'charged' pions, lets neutral pion decay

 Detector-scale lifetimes for at least one species are thus generic

- Emerging jets: displaced
 - Jetty events, lightest dark hadron has detector-scale lifetime
 - realization: pair production of bifundamentals, color charge
 - dark pions decay back to quark pairs

Detector-scale lifetimes for at least one species are thus generic

In general, some combination of prompt + displaced + detector-stable

Detector signal is inextricably tied to multiplicity of specific given dark hadron species

- and the existence of jets is also an expectation inherited from QCD
 - at very large 't Hooft coupling one expects spherical events (sueps)
 - ➤ at moderate 't Hooft coupling...?

INCLUSIVE SEARCHES FOR DARK SHOWERS

- ➤ "(Displaced) dark showers": ≥ 3 displaced objects/event
 - Clean signature; enables inclusive searches
 - Strategy: use QCD-esque benchmarks, prioritize inclusivity at analysis level
- Components of a dark shower event:
 - production
 - evolution
 - decay

SUMMARY AND CONCLUSIONS

- Exciting developments in long-lived particle searches
 - pushing to lower thresholds
 - looking at longer, shorter lifetimes
 - high-multiplicity final states
- Confining and/or multi-component hidden sectors
 - complicated, variable multiplicity final states
 - well-motivated generic possibility for BSM physics
 - enormous theoretical uncertainties
 - need to develop systematic, inclusive search strategies from clean signatures