

MINISTERIO DE CIENCIA E INNOVACIÓN

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

ILD inner region

Mary-Cruz Fouz

CIEMAT

17th Sep 2021. MDI-Phys - Layout of MDI region

Layout of the ILD inner region

The central interaction region of ILD

Beam pipe Surrounding Silicon detectors Forward Calorimeters Interface to QD0 magnets

Inner tracking

Inner tracking - Vertex

Inner tracking – Silicon Inner Tracker

Inner tracking – Inner Support Structure

Inner Support Structure - ISS Support tube Carbon-fiber reinforced plastic 4700 mm Length: Outer diameter: 650 mm The tube is fixed to the end plates of the TPC Active alignement apparate It includes a **piezo-base active alignment system** for its positioning independently of the main ILD structure (precision better than 0.01 mm) This alignment is required to adjust the beam pipe and

the inner tracking devices with respect to the beam axis, to better precision than what can be achieved with the complete ILD detector

Forward Calorimeters & QD0

QD0 & support structure

QD0 quadrupole, is an integral part of ILD.

Stainless still support structure carrying the magnet and forward calorimeters

The structure is supported from a pillar outside of the detector standing on the transport platform and with tension rods attached to the coil cryostat

The platform will be aligned in a mm range to the beam axes

The alignment system of QD0 is under investigation

Requirements: ±50 μm , ± 20 μrad

The design allows a limited opening of the endcaps in the beam position without breaking machining vacuum ILD opened at beam line

ILD opened in the maintenance position

M.C Fouz

Cabling and cooling pipes

Cables (or place holders) equally distributed around beam pipe

ILC-EDMS

Differences in layout with previous version

Simulation model

IDR-L IDR-S

Detector	IDR-L	IDR-S
B-field	3.5 T	4 T
VTX inner radius	1.6 cm	1.6 cm
TPC inner radius	33 cm	33 cm
TPC outer radius	177 cm	143 cm
TPC length (z/2)	235 cm	235 cm
ECAL inner radius	180 cm	146 cm
ECAL outer radius	203 cm	169 cm
HCAL inner radius	206 cm	172 cm
HCAL outer radius	334 cm	300 cm
Coil inner radius	342 cm	308 cm

ILD_I5_v02 (large), ILD_s5_v02 (small) implemented using DD4hep

Main difference of Small vs Large

reduced radii of the TPC, the barrels of ECAL, HCAL, Yoke and Coil B-field 4T (instead 3.5T)

No decision taken on which chose

Detailed Bfield map created for each model with and without anti-DID

M.C Fouz

Impact of vacuum pump removal?

WITH Vacuum pump → 7 nTorr WITHOUT Vacuum pump → 150 nTorr

Simulations performed

ILD-TECH-PUB-2017-001 12 June 2017

Electromagnetic rate ~every 3 bunches

(~1 photos * 0.05 e created) Hadronic rate <1 every 100 trains (~3.3 hadrons created)

In average effect is negligible since the Pair Background is much bigger But

Individual events in some cases can produce large number of hits

	nTorr	Tracker	Forward Calorimeters	Backward Calorimeters	
Total	7	$(600 \pm 5) \cdot 10^{-3}$	$(380 \pm 3) \cdot 10^{-3}$	$(88 \pm 1) \cdot 10^{-4}$	
	150	13 ± 0.1	$(800 \pm 5) \cdot 10^{-2}$	$(190 \pm 2) \cdot 10^{-3}$	
Pair ba	Pair background $(4.3 \pm 0.4) \cdot 10^3$		$\mathcal{O}\left(10^4-10^5 ight)$		
Mainly due to photons					

hits expected per bunch

iviality due to photons

	Beam-Gas Background		Pair Induced Background
Subdetector	hits/BX [7nTorr]	hits/BX [150nTorr]	hits/BX
VTX	$(390 \pm 6) \cdot 10^{-4}$	0.83 ± 0.01	$(3.2 \pm 0.2) \cdot 10^3$
FTD	$(96 \pm 1) \cdot 10^{-3}$	2 ± 0.02	690 ± 40
TPC	$(450 \pm 5) \cdot 10^{-3}$	9.7 ± 0.1	470 ± 400
SIT	$(160 \pm 2) \cdot 10^{-4}$	$(350\pm4)\cdot10^{-3}$	11 ± 9
SET	$(120\pm2)\cdot10^{-6}$	$(250\pm3)\cdot10^{-5}$	1.3 ± 4
BeamCalFront	$(650\pm7)\cdot10^{-4}$	1.4 ± 0.01	$\mathcal{O}\left(10^4-10^5 ight)$

Anti-DID

Proposed Anti-DID (2 dipoles centered on the beam axis with magnetic field parallel to outgoing beam)

→ Must reduce background guiding particles towards outgoing pipe

LC-DET-2012-081

Effects of implementing a anti-DID – forward calorimeter region

Production vertex [in the +z BeamCal region] of particles producing hits in VDX L1,2

Effects of implementing a anti-DID –tracker region

LAYER:	hits/BX No anti-DID mean ± RMS	hits/BX anti-DID mean \pm RMS	$hits/BX/cm^2$ anti-DID mean \pm RMS
VXD 1: VXD 2:	$1400 \pm 780 \\ 970 \pm 560$	$910 \pm 360 \\ 540 \pm 210$	$6.6 \pm 2.6 \\ 4.0 \pm 1.5$
VXD 3: VXD 4: VXD 5: VXD 6:	$150 \pm 80 \\ 110 \pm 60 \\ 44 \pm 30 \\ 39 \pm 27$	$130 \pm 60 \\ 110 \pm 50 \\ 40 \pm 26 \\ 34 \pm 24$	$\begin{array}{c} 0.21 \pm 0.10 \\ 0.18 \pm 0.09 \\ 0.04 \pm 0.03 \\ 0.04 \pm 0.03 \end{array}$
FTD 1: FTD 2: FTD 3: FTD 4: FTD 5: FTD 6: FTD 7:	$\begin{array}{c} 42 \pm 30 \\ 27 \pm 19 \\ 62 \pm 45 \\ 42 \pm 33 \\ 29 \pm 23 \\ 16 \pm 13 \\ 10 \pm 8 \end{array}$	$\begin{array}{c} 38 \pm 26 \\ 24 \pm 15 \\ 40 \pm 27 \\ 25 \pm 17 \\ 18 \pm 13 \\ 9 \pm 7 \\ 6 \pm 5 \end{array}$	$\begin{array}{c} 0.043 \pm 0.030 \\ 0.029 \pm 0.019 \\ 0.014 \pm 0.010 \\ 0.009 \pm 0.007 \\ 0.007 \pm 0.005 \\ 0.004 \pm 0.003 \\ 0.003 \pm 0.003 \end{array}$
SIT 1: SIT 2: SIT 3: SIT 4: SET 1:	51 ± 37 49 ± 36 77 ± 56 71 ± 54 39 ± 28	24 ± 16 21 ± 12 34 ± 24 31 ± 21 15 ± 10	$\begin{array}{c} 0.0032 \pm 0.0023 \\ 0.0029 \pm 0.0017 \\ 0.0014 \pm 0.0010 \\ 0.0013 \pm 0.0009 \end{array}$
SET 2:	46 ± 36	$\frac{10 \pm 10}{18 \pm 12}$	0.00003 ± 0.00002

Beamstrahlung hits per BX (ILC250)

Most hits in the inner vertex layers The anti-DID reduces the total number of hits by ~35%

Factor 2 reduction, but there are few hits

For the small ILD version the overall hit rates reduced ~10% thanks to better confinement within beampipe due to higher Bfield

Simulation of Muon Background at the ILC*

L. Keller and G. White SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025

Effects of Beam Halo spoilers in ILD

Using previous muon mometa distributions and simulating them for ILD

Final remarks

There are not really final optimization of detectors

Not a detailed description of the cabling, cooling pipes, etc (not even available in many cases)

More studies needed

Main issue → Manpower