

Kaoru Yokoya 2021.09.30 IDT-WG3

Manual CAIN244bmanual.pdf and FORTRAN source file Cain244b.zip are uploaded to the indico site https://agenda.linearcollider.org/event/9396/

Versions

- ➤ Started in 1984, named ABEL, for beam-beam interaction in JLC
 - ✓ Pinch effect
 - ✓ Beamstrahlung
- Later, renamed to CAIN when beam-laser interaction was included for gamma-gamma colliders
- Latest version: not clear.
 - ✓ Perhaps, CAIN2.44b, but a beta version
 - ✓ CAIN2.43 is better
- ≻ Code
 - ✓ Written in FORTRAN90 since recursive calls were included
 - \checkmark Windows version and UNIX version
 - \checkmark I have almost stopped revising the code.
 - \checkmark Ask Tauchi san for UNIX version and compilation
- > Manual available. Uploaded to today's indico page
- Possible bugs
 - ✓ Sometimes a strange phenomena when too many macroparticles are used
 - $\checkmark\,$ Routines which are used only rarely

Structure of the Code

All the particles (electron, positron, photon) are in one big array, containing the info of the space-time, energy-momentum, polarization, etc.

≻Fields

- ✓Beam-beam field
- External field (constant field, quadrupole field, laser field)

- Simple arithmetic can be done in the input file
- ➤Variables
 - Can use numerical variables, character strings, arrays
 - ✓Pre-defined variables such as Pi, Emass…
- ➤Expressions
 - ✓Arithmetic, logical
- ➢Pre-defined functions
 - ✓Sin, Exp, Log, BesJ, etc.

Commands

- ➤ Math expression
 - ✓ SET, ARRAY
- ➤ Control :
 - ✓ DO, CYCLE, EXIT, ENDDO,
 - ✓ IF, ELSEIF, ELSE, ENDIF
- ➤ Output
 - ✓ WRITE, PRINT
 - ✓ PLOT (use very old software TOPDRAWER)
- ➢ Beam definition
 - ✓ BEAM
 - ✓ LASER
- Interaction control
 - ✓ BBFIELD beam-beam field
 - ✓ LASERQED
 - ✓ CFQED beamstrahlung, coherent pair creation,
 - ✓ LUMINOSITY
 - ✓ PPINT (incoherent pair)
- ➤ Beamline
 - ✓ MAGNET, BEAMLINE, BLOPTICS, MATCHING
 - ✓ TRANSPORT, ENDTRANSPORT
- ➤ Execution
 - ✓ PUSH, ENDPUSH
 - ✓ DRIFT

Polarization

- Spin of electron/positron and Stokes parameters of photons
- Treated as density matrix
- But not for all the interactions

		initial e^{\pm}	laser	final e^{\pm}	final γ
Beamstrahlung	$e^{\pm} \rightarrow e^{\pm} + \gamma$	LT	—	LT	LT
Linear laser-Compton	$e^{\pm} + laser \rightarrow e^{\pm} + \gamma$	LT	LT	LT	LT
Nonlinear laser-Compton	$e^{\pm} + n \cdot laser \rightarrow e^{\pm} + \gamma$	\mathbf{L}	L^*	\mathbf{L}	\mathbf{L}
	or	Ν	T^*	Ν	Т
		$\text{initial }\gamma$	laser	final e^{\pm}	
Coherent pair	$\gamma \rightarrow e^+ + e^-$	LT	—	LT	
Linear laser-Breit-Wheeler	$\gamma + \text{laser} \rightarrow e^+ + e^-$	LT	LT	LT	
Nonlinear laser-Breit-Wheeler	$\gamma + n \cdot \text{laser} \rightarrow e^+ + e^-$	\mathbf{L}	L^*	\mathbf{L}	
		initial	final pair		
Incoherent Breit-Wheeler	$\gamma + \gamma \rightarrow e^+ + e^-$	\mathbf{L}	Ν		
Incoherent Bethe-Heitler	$\gamma + e \rightarrow e + e^+ + e^-$ $e + e \rightarrow e + e^+ + e^-$	Ν	Ν		
Incoherent Landau-Lifshitz	$e + e \rightarrow e + e + e^+ + e^-$	Ν	Ν		
		initial	final		
Bremsstrahlung	$e + e \rightarrow e + e + \gamma$	Ν	Ν		

- > L : Longitudinal spin of electron/positron (or circular polarization of photon).
- > T : Transverse spin of electron/positron (or linear polarization of photon).
- \succ * : 100% polarization only
- > N: Not computed. (No change for existing particles, zero for created particles)
- ➤ : Irrelevant

Beam Definition

Courant-Snyder parameters: Following parameters can be used

N (bunch-population), E, (t, x, y, s) (beam-center), $\beta_{x,y}, \alpha_{x,y}, \eta_{x,y}, \eta'_{x,y}, \sigma_t, \sigma_\epsilon,$ $\psi_{x,y}$ (crab-angle), $\theta_{x,y}$ (crossing-angle), $\phi_{x,y}$ (x-y role), $(\zeta_x, \zeta_y, \zeta_s)$ (spin), etc.

Beam data can also be read from files CAIN standard format, MATHEMATICA format, FORTRAN NAMELIST) Or, user-defined format (see Sec.3.5.2 of the manual

Beam-Beam Field

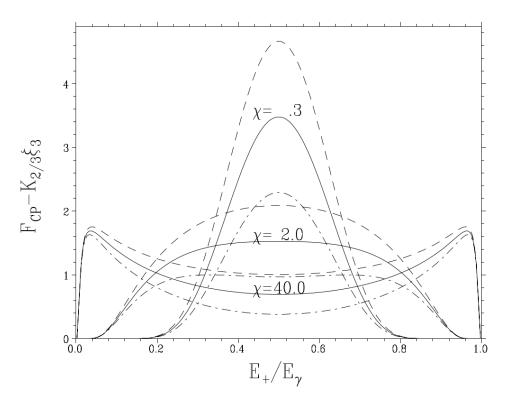
➤Longitudinal slices

- ✓ No interaction between different slices (Lorentz contraction)
- ✓Longitudinal mesh size must be defined by the user
- ➤Interaction within each slice (2D)
 - ✓Main part
 - Equal-space, rectangular mesh
 - Kernel potential averaged over a mesh
 - Fast computation by FFT
 - ✓Outside region
 - Ignore the contribution of the particles outside the mesh region
 - But the force from the main part to outside partcles is included by either direct Coulomb force or by harmonic expansion (see Sec.5.7 of the CAINmanual244b for more detail)
 - ✓ Size of the "main part" and the mesh size are decided by the input data, not automatically.

Beamstrahlung

➤Use the formula in constant (within the slice) magnetic field

$$dW = \frac{\alpha m}{\sqrt{3}\pi\gamma} \left[Ki_{5/3}(z') + \frac{x^2}{1-x} K_{2/3}(z) \right] dx,$$
$$x \equiv \omega_{\gamma}/E_0, \qquad z \equiv \frac{2}{3\Upsilon} \frac{x}{1-x}, \qquad \Upsilon \equiv \gamma \frac{B}{B_{sch}}$$
$$B_{sch} = m^2/e = 4.4 \times 10^9 \text{ Tesla}$$
$$Ki_{\nu}(z) = \int_{z}^{\infty} K_{\nu}(z') dz'$$


- Emission angle is not taken into account
- ➢ Polarization
 - ✓ Initial and final electron polarization (longitudinal and transverse) and the Stokes parameter of the final photon are included
 - \checkmark So, the actual formula is much more complicated than above
- > Special functions such as $Ki_{5/3}$ and $K_{2/3}$ are approximated by appropriated polynomials

Coherent Pair Creation

➤Constant field formula

$$dW = \frac{\alpha m^2 dE_+}{4\sqrt{3}\pi\omega_\gamma^2} \times \left[Ki_{1/3}(z) + \left(\frac{E_-}{E_+} + \frac{E_+}{E_-}\right)\right] K_{2/3}(z)$$
$$E_- = \omega_\gamma - E_+, \quad z = \frac{2}{3\chi} \frac{\omega_\gamma^2}{E_+E_-}, \quad \chi \equiv \frac{\omega_\gamma}{mc^2} \frac{B}{B_{sch}}$$

- > Polarization of (e^+, e^-, γ) is included
 - ✓ The formula is much more complex than above
- ➤ Creation angle ignored
- > The algorithm is inefficient for large χ (>~ 1000)

Incoherent Processes

Included processes

Breit-Wheeler Bethe-Heitler Landau-Lifshitz Bremssstrahlung $\begin{array}{c} \gamma + \gamma \rightarrow e^{-} + e^{+} \\ \gamma + e^{+-} \rightarrow e^{+-} + e^{-} + e^{+} \\ e + e \rightarrow e + e + e^{-} + e^{+} \\ e + e \rightarrow e + e + \gamma \end{array}$

Breit-Wheeler process

✓ Formula including circular polarization of initial photons is used

Other processes are reduced to Breit-Wheeler by the virtual (almost real) photon approximation, i.e.,

 $\gamma + \gamma' \rightarrow e^- + e^+$

 $\gamma' + \gamma' \rightarrow e^- + e^+$

Bethe-Heitler Landau-Lifshitz

Bremssstrahlung $e + '\gamma' \rightarrow e + \gamma$ where '\gamma' is the virtual photon

> These low energy pairs are somehow tracked

✓ Use the exact formula of motion in a constant field (special mesh size is not introduced)

✓ Time consuming

➤ See Sec.5.11 Incoherent processes of the manual

Beam-Laser Interaction

➤Laser intensity parameter

$$\xi = \frac{e\sqrt{-A^{\mu}A_{\mu}}}{m} = \frac{\lambda_L}{2\pi m}\sqrt{\mu_0 cP}$$

$$A^{\mu} = \text{vector potential}, \quad P = \text{power density}$$

 \checkmark Often denoted by *a* (plasma) or *K* (undulator)

- The laser is treated as an external field, but the created photons are treated as particles
- Laser field is defined by the parameters such wavelength, Rayleigh length, power density, Stokes parameters, profile (Gaussian, trapezoidal, cutoff, etc)

≻Processes

- ✓Laser-Compton
- ✓Laser-gamma (Breit-Wheeler process between laser and gamma)

Laser-Compton

- Formulas expanded by Bessel functions are used
 - ✓ Valid for any ξ in principle but the convergence is poor for large ξ . Actually, $\xi \sim 3$ is the limit.
 - Laser-Compton was introduced to CAIN because of the gamma-gamma collider. ξ up to 1 was enough.
 - Sometimes QED people want very large ξ , but CAIN cannot treat such a case. I cannot find a good formula for large $\xi.$
 - Can also be used to simulate the radiation by electron/positron in undulators

➢ Polarization

- \checkmark Initial and final electron helicity
- ✓ Final photon helicity
- ✓ Laser polarization
 - Must be either 100% circular
 - or 100% linear
 - This case has not been checked well
 - Written for an experiment at BNL many years ago
 - "Unpolarized laser" impossible
 - TDL (times diffraction parameter) is adopted by physics is not clear
- > Linear Compton formula can be used for very small ξ
 - ✓ Treated as particle-particle interaction
 - ✓ Almost all polarizations are included

Laser Breit-Wheeler

Similar to laser-Compton (different channel)

- ✓Introduced also for gamma-gamma collider
 - Photons created by laser-Compton can disappear by pair creation in the same laser
- ✓Bessel function expansion
 - Poor convergence for large ξ
 - No linear polarization of the laser

Outputs

➤Particle list

- ✓ To a text file
- \checkmark At any time during the collision

➤Graphic output

- Only to for the very old software "topdrawer" developed > 40 years ago
- You have to create graphic data unless you have "topdrawer"

≻Luminosity

- Any combination of particle species (γ, e⁺, e⁻) for right/left going
- ✓ For Topdrawer or numerical table
- ✓ Helicity can be separated

What else is needed?

- ➤A few years ago, Daniel Jeans asked me if physics events can be generated during the collision simulation. This makes it possible to generate events with the vertex position recorded.
- ► CAIN2.44b introduced an operand "PPDATA= n_f " of the LUMINOSITY command. Then, CAIN writes particle info (energy-momentum, space-time, etc.) at any close encounter of 2 particles on the file $\#n_f$.
- However, this will create a huge file (> several hundred Giga bytes). Not very practical.
- ➢For that purpose, perhaps, you have to edit the subroutine PPINT in the source file.

What else is needed? (continued)

Big fix for large number of macroparticlesThis is hard

- >Very large Upsilon or χ ?
- ➤Angle of beamstrahlung?
- Compton scattering (not as laser-Compton)?

 \succ Laser with very large ξ .