Beam properties for ILC with GuineaPig

Mikael Berggren¹

¹DESY, Hamburg.

IDT-WG3-MDI, online, September 30, 2021

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

< ロ > < 同 > < 回 > < 回 >

- Future LCs aim for extremely high precision measurements.
 - $\bullet \ \Rightarrow$ Need excellent detector, well controlled machine conditions
 - But also the best possible estimate of backgrounds.
- MC statistics or lacking channels must not be a major source of systematic errors ⇒
 - All SM channels yielding at least a few events under the full lifetime of the projects need to be generated, with statistics largely exceeding that of the real data.
 - Also machine conditions need to be accurately taken into account.
- In addition: at an LC ALL events are interesting, and often fully reconstructed. More like a B-factory than LHC!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Future LCs aim for extremely high precision measurements.
 - $\bullet \ \Rightarrow$ Need excellent detector, well controlled machine conditions
 - But also the best possible estimate of backgrounds.
- MC statistics or lacking channels must not be a major source of systematic errors ⇒
 - All SM channels yielding at least a few events under the full lifetime of the projects need to be generated, with statistics largely exceeding that of the real data.
 - Also machine conditions need to be accurately taken into account.
- In addition: at an LC ALL events are interesting, and often fully reconstructed. More like a B-factory than LHC!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Future LCs aim for extremely high precision measurements.
 - $\bullet \ \Rightarrow$ Need excellent detector, well controlled machine conditions
 - But also the best possible estimate of backgrounds.
- MC statistics or lacking channels must not be a major source of systematic errors ⇒
 - All SM channels yielding at least a few events under the full lifetime of the projects need to be generated, with statistics largely exceeding that of the real data.
 - Also machine conditions need to be accurately taken into account.
- In addition: at an LC ALL events are interesting, and often fully reconstructed. More like a B-factory than LHC!

- Future LCs aim for extremely high precision measurements.
 - $\bullet \ \Rightarrow$ Need excellent detector, well controlled machine conditions
 - But also the best possible estimate of backgrounds.
- MC statistics or lacking channels must not be a major source of systematic errors ⇒
 - All SM channels yielding at least a few events under the full lifetime of the projects need to be generated, with statistics largely exceeding that of the real data.
 - Also machine conditions need to be accurately taken into account.
- In addition: at an LC ALL events are interesting, and often fully reconstructed. More like a B-factory than LHC!

Generate the full SM? What's the problem?

- Just select a generator, and press <RET>, right?
- Noooo..., not really. Lots of details:
 - What collides ($e^{+/-}$ or γ ?)
 - What energy do they have, and how are they polarised ??
 - Where do they collide ?
 - Beam-spot properties
 - What else happens?
 - Beem-strahlung gives pairs
 Do they hit anything 7 Maybe forward calorimetry, or the tracking postern 7
 - Multiple interactions (pile-up) 2

Generate the full SM? What's the problem?

- Just select a generator, and press <RET>, right?
- Noooo..., not really. Lots of details:
 - What collides (e^{+/-} or γ ?)
 - What energy do they have, and how are they polarised ??
 - Where do they collide ?
 - Beam-spot properties
 - What else happens?
 - Beam-strahlung gives pairs
 Do they hit anything ? Maybe forward calorimetry, or the tracktory
 - Multiple interactions (pile-up) 2

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Generate the full SM? What's the problem?

- Just select a generator, and press <RET>, right?
- Noooo..., not really. Lots of details:
 - What collides (e^{+/-} or γ ?)
 - What energy do they have, and how are they polarised ?
 - Where do they collide ?
 - Beam-spot properties
 - What else happens?
 - Beam-strahlung gives pairs
 Do they hit anything ? Maybe forward calorimetry, or the tracking system ?
 - Multiple interactions (pile-up) ?

Generate the full SM? What's the problem?

- Just select a generator, and press <RET>, right?
- Noooo..., not really. Lots of details:
 - What collides (e^{+/-} or γ ?)
 - What energy do they have, and how are they polarised ?
 - Where do they collide ?
 - Beam-spot properties
 - What else happens?
 - Beam-strahlung gives pairs
 Do they hit anything ? Maybe forward calorimetry, or the tracking system ?
 - Multiple interactions (pile-up) ?

Generate the full SM? What's the problem?

- Just select a generator, and press <RET>, right?
- Noooo..., not really. Lots of details:
 - What collides (e^{+/-} or γ ?)
 - Whe All this needs beam conditions simulation !
 - Wha For more on generating the full SM,
 - see arXiv:2105.04049 !!
 - System ?
 - Multiple interactions (pile-up) ?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

?

Generate the full SM? What's the problem?

- Just select a generator, and press <RET>, right?
- Noooo..., not really. Lots of details:
 - What collides (e^{+/-} or γ ?)
 - Whe All this needs beam conditions simulation !
 - Wha For more on generating the full SM,
 - see arXiv:2105.04049 !!

System ?

• Multiple interactions (pile-up) ?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

?

Final state

- Number of fermions (1 to 8)
- Flavour-grouping: W or Z, or ambiguous
- leptonic, hadronic, semi-leptoni (+ neutrino only, for Z-leptonic)

But also:

- Initial state
 - ee, $\gamma\gamma$ or e γ
 - e polarisation and γ type (real or virtual)
- Special considerations
 - Eg. 4f with |L_e|=2 ⇒ dominated by single W or single Z (t-channel !)
 - Avoid double-counting: Eg.

- Final state
 - Number of fermions (1 to 8)
 - Flavour-grouping: W or Z, or ambiguous
 - leptonic, hadronic, semi-leptoni (+ neutrino only, for Z-leptonic)

But also:

- Initial state
 - ee, $\gamma\gamma$ or e γ
 - e polarisation and γ type (real or virtual)
- Special considerations
 - Eg. 4f with |L_e|=2 ⇒ dominated by single W or single Z (t-channel !)
 - Avoid double-counting: Eg.

• Final state

- Number of fermions (1 to 8)
- Flavour-grouping: W or Z, or ambiguous
- leptonic, hadronic, semi-leptoni (+ neutrino only, for Z-leptonic)

But also:

- Initial state
 - ee, $\gamma\gamma$ or e γ
 - e polarisation and γ type (real or virtual)
- Special considerations
 - Eg. 4f with |L_e|=2 ⇒ dominated by single W or single Z (t-channel !)
 - Avoid double-counting: Eg.

- Final state
 - Number of fermions (1 to 8)
 - Flavour-grouping: W or Z, or ambiguous
 - leptonic, hadronic, semi-leptoni (+ neutrino only, for Z-leptonic)

But also:

- Initial state
 - ee, $\gamma\gamma$ or e γ
 - e polarisation and γ type (real or virtual)
- Special considerations
 - Eg. 4f with |L_e|=2 ⇒ dominated by single W or single Z (t-channel !)
 - Avoid double-counting: Eg.

- Final state
 - Number of fermions (1 to 8)
 - Flavour-grouping: W or Z, or ambiguous
 - leptonic, hadronic, semi-leptoni
 - (+ neutrino only, for Z-leptonic)

But also:

- Initial state
 - ee, $\gamma\gamma$ or e γ
 - e polarisation and γ type (real or virtual)
- Special considerations
 - Eg. 4f with |L_e|=2 ⇒ dominated by single W or single Z (t-channel !)
 - Avoid double-counting: Eg.

- Final state
 - Number of fermions (1 to 8)
 - Flavour-grouping: W or Z, or ambiguous
 - leptonic, hadronic, semi-leptoni (+ neutrino only, for Z-leptonic)

But also:

- Initial state
 - ee, $\gamma\gamma$ or e γ
 - e polarisation and γ type (real or virtual)
- Special considerations
 - Eg. 4f with |L_e|=2 ⇒ dominated by single W or single Z (t-channel !)
 - Avoid double-counting: Eg.

- Final state
 - Number of fermions (1 to 8)
 - Flavour-grouping: W or Z, or ambiguous
 - leptonic, hadronic, semi-leptoni (+ neutrino only, for Z-leptonic)

But also:

- Initial state
 - $\bullet~$ ee, $\gamma\gamma~{\rm or}~{\rm e}\gamma$
 - e polarisation and γ type (real or virtual)
- Special considerations
 - Eg. 4f with |L_e|=2 ⇒ dominated by single W or single Z (t-channel !)
 - Avoid double-counting: Eg.

- Final state
 - Number of fermions (1 to 8)
 - Flavour-grouping: W or Z, or ambiguous
 - leptonic, hadronic, semi-leptoni (+ neutrino only, for Z-leptonic)

But also:

- Initial state
 - $\bullet~$ ee, $\gamma\gamma~{\rm or}~{\rm e}\gamma$
 - e polarisation and γ type (real or virtual)
- Special considerations
 - Eg. 4f with |L_e|=2 ⇒ dominated by single W or single Z (t-channel !)
 - Avoid double-counting: Eg.

- Final state
 - Number of fermions (1 to 8)
 - Flavour-grouping: W or Z, or ambiguous
 - leptonic, hadronic, semi-leptoni (+ neutrino only, for Z-leptonic)

But also:

- Initial state
 - $\bullet~$ ee, $\gamma\gamma~{\rm or}~{\rm e}\gamma$
 - e polarisation and γ type (real or virtual)
- Special considerations
 - Eg. 4f with |L_e|=2 ⇒ dominated by single W or single Z (t-channel !)
 - Avoid double-counting: Eg. $a^*a^* \rightarrow f\bar{f} vs a^+a^- \rightarrow a^+a^- t$

- Final state
 - Number of fermions (1 to 8)
 - Flavour-grouping: W or Z, or ambiguous
 - leptonic, hadronic, semi-leptoni (+ neutrino only, for Z-leptonic)

But also:

- Initial state
 - ee, $\gamma\gamma$ or e γ
 - e polarisation and γ type (real or virtual)
- Special considerations
 - Eg. 4f with |L_e|=2 ⇒ dominated by single W or single Z (t-channel !)
 - Avoid double-counting: Eg.

Final state

- Number of fermions (1 to 8)
- Flavour-grouping: W or Z, or ambiguous
- leptonic, hadronic, semi-leptonic
 - (+ neutrino only, for Z-leptonic)

But also:

- Initial state
 - ee, $\gamma\gamma$ or e γ
 - e polarisation and γ type (real or virtual)
- Special considerations
 - Eg. 4f with |L_e|=2 ⇒ dominated by single W or single Z (t-channel !)
 - Avoid double-counting: Eg. $\gamma^* \gamma^* \rightarrow f\bar{f}$ vs. $e^+e^- \rightarrow e^+e^-f\bar{f}$.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

 $e^{-}(32)$

 $e^{+}(16)$

Process classification

• Final state

- Number of fermions (1 to 8)
- Flavour-grouping: W or Z, or ambiguous
- leptonic, hadronic, semi-leptonic
 - (+ neutrino only, for Z-leptonic)

But also:

- Initial state
 - $\bullet~$ ee, $\gamma\gamma~{\rm or}~{\rm e}\gamma$
 - e polarisation and γ type (real or virtual)
- Special considerations
 - Eg. 4f with |L_e|=2 ⇒ dominated by single W or single Z (t-channel !)
 - Avoid double-counting: Eg. $\gamma^* \gamma^* \rightarrow f\bar{f}$ vs. $e^+e^- \rightarrow e^+e^-f\bar{f}$.

All this needs beam

conditions simulation !

(4)

u(1)

 $\bar{\nu}_e(8)$

17

• • • • • • • • • • • • •

 $\gamma_{\prime+\prime} \bar{d}(2)$

Beam-spectrum.

- Incoming beam-spread
- ② But also: very strongly focused beams ⇒ Beam-beam interactions

Photons

- How many photons?
- Are they virtual or real?

• Need beam-beam interaction simulation input.

Beam-spectrum.

- Incoming beam-spread
- ② But also: very strongly focused beams ⇒ Beam-beam interactions
- Photons
 - How many photons?
 - 2 Are they virtual or real?
- Need beam-beam interaction simulation input.

Beam-spectrum.

- Incoming beam-spread
- ② But also: very strongly focused beams ⇒ Beam-beam interactions
- Photons
 - How many photons?
 - 2 Are they virtual or real?
- Need beam-beam interaction simulation input.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Simulate interaction region: GuineaPig [CERN-PS-99-014-LP]. Gives:
 - Beam-spectrum for electrons and positrons independently
 - Actual simulation: CIRCE 2 (part of WHIZARD)
 - Use GUINEAPIG output to "automatically" create an MC-generator of the beam-spectrum. But: need quite some expertise to get good fidelity ...
 - Amount and spectrum of real photons
 - Distribution of interaction point

イロト イヨト イヨト イヨト

40th ICHEP, Jul-Aug 2020 6/10

- Simulate interaction region: GuineaPig [CERN-PS-99-014-LP]. Gives:
 - Beam-spectrum for electrons and positrons independently
 - Actual simulation: CIRCE 2 (part of WHIZARD)
 - Use GUINEAPIG output to "automatically" create an MC-generator of the beam-spectrum. But: need quite some expertise to get good fidelity ...
 - Amount and spectrum of real photons
 - Distribution of interaction point

- Simulate interaction region: GuineaPig [CERN-PS-99-014-LP]. Gives:
 - Beam-spectrum for electrons and positrons independently
 - Actual simulation: CIRCE 2 (part of WHIZARD)
 - Use GUINEAPIG output to "automatically" create an MC-generator of the beam-spectrum. But: need quite some expertise to get good fidelity ...
 - Amount and spectrum of real photons
 - Distribution of interaction point

- Simulate interaction region: GuineaPig [CERN-PS-99-014-LP]. Gives:
 - Beam-spectrum for electrons and positrons independently
 - Actual simulation: CIRCE 2 (part of WHIZARD)
 - Use GUINEAPIG output to "automatically" create an MC-generator of the beam-spectrum. But: need quite some expertise to get good fidelity ...
 - Amount and spectrum of real photons
 - Distribution of interaction point

.

Two types:

- Pair-background: Pair-creation of photons in the beam by the strong fields. GuineaPig can generate the full activity during a beam-crossing (a "BX").
- low-p_⊥ hadrons, ie. γ^(*)γ^(*) interaction with small M_{γγ} and multiplicity. NB: only O(1)/BX !
 - ME can't do this, and PYTHIA is good down to $M_{\gamma\gamma}\sim$ 2 GeV.
 - Below: fit to data Custom generator developed by LCGG.

< ロ > < 同 > < 回 > < 回 >

Two types:

- Pair-background: Pair-creation of photons in the beam by the strong fields. GuineaPig can generate the full activity during a beam-crossing (a "BX").
- low-p_⊥ hadrons, ie. γ^(*)γ^(*) interaction with small M_{γγ} and multiplicity. NB: only O(1)/BX !
 - ME can't do this, and PYTHIA is good down to $M_{\gamma\gamma}\sim$ 2 GeV.
 - Below: fit to data Custom generator developed by LCGG.

Two types:

- Pair-background: Pair-creation of photons in the beam by the strong fields. GuineaPig can generate the full activity during a beam-crossing (a "BX").
- low-p_{\perp} hadrons, ie. $\gamma^{(*)}\gamma^{(*)}$ interaction with small $M_{\gamma\gamma}$ and multiplicity. NB: only $\mathcal{O}(1)/BX$!
 - ME can't do this, and PYTHIA is good down to $M_{\gamma\gamma} \sim$ 2 GeV.
 - Below: fit to data Custom generator developed by LCGG.

- These backgrounds need to be passed on to simulation, but in a different mode.
- $\bullet\,$ Eg. can't simulate $\sim 10^5$ pairs on each physics event.
- Actually, can't generate that either: time for 1 BX 5-10 minutes
- Find the few tracks that do hit the tracking (< 100/BX). Do \sim 100000 BXes, and pick a random one from the pool to overlay to each physics event.
 - Done using the fast detector simulation code SGV, which faithfully evaluates detector acceptance.
- Similar for low-p₁ hadrons, but here also the number per BX is random, and their production point.

イロト 不得 トイヨト イヨト

- These backgrounds need to be passed on to simulation, but in a different mode.
- $\bullet\,$ Eg. can't simulate $\sim 10^5$ pairs on each physics event.
- Actually, can't generate that either: time for 1 BX 5-10 minutes
- Find the few tracks that do hit the tracking (< 100/BX). Do \sim 100000 BXes, and pick a random one from the pool to overlay to each physics event.
 - Done using the fast detector simulation code SGV, which faithfully evaluates detector acceptance.
- Similar for low-p₁ hadrons, but here also the number per BX is random, and their production point.

- These backgrounds need to be passed on to simulation, but in a different mode.
- $\bullet\,$ Eg. can't simulate $\sim 10^5$ pairs on each physics event.
- Actually, can't generate that either: time for 1 BX 5-10 minutes
- Find the few tracks that do hit the tracking (< 100/BX). Do \sim 100000 BXes, and pick a random one from the pool to overlay to each physics event.
 - Done using the fast detector simulation code SGV, which faithfully evaluates detector acceptance.
- Similar for low-p₁ hadrons, but here also the number per BX is random, and their production point.

BeamCal hits

- Also, use some (O(100)) BXes to simulate pairs hitting the BeamCal,
- Compare different beam parameters and energies.
- Build a map of the background, to be used in the BeamCal simulation.

BeamCal hits

- Also, use some (O(100)) BXes to simulate pairs hitting the BeamCal,
- Compare different beam parameters and energies.
- Build a map of the background, to be used in the BeamCal simulation.

Conclusion –

Summary of steps to simulate ILC beam conditions

Beam-conditions etc:

- Beam background with GuineaPig, 100000 BXes
 - Pair background
 - Need to create files with real tracks
 - One event with 1 BX
 - SGV is used to do this.
 - Beam-spectrum and Circe2 parametrisation.
 - Beam-spot size and position.
 - Input for BeamCal background maps.
- aa_lowpt for "pile-up"
 - Events to overlay.
 - Average number per BX evaluated.