A. Pastushenko, A. Faus-Golfe

In Longer L* optics, QD0 is foreseen to be located outside of the detector.

Why it is needed:

0.4

0.2

-0.2

-0.4

-0.6

-0.8

-3000

x[m]

- To alleviate engineering and stabilization issues of the MDI.
- Easier access to the detector and QD0 region.

CLIC 3 TeV $(L^* = 6 m)$

-2000

-1500

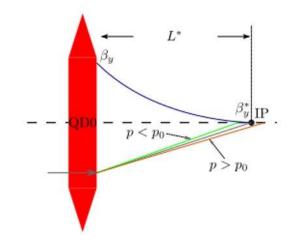
s[m]

c.a = 20 mrad

-2500

Minimized solenoid field impact.

CLICdet for optics with $L^* = 6 \text{ m}^1$:



$$\sigma_{x,y}^{*2} = \epsilon_{x,y} \beta_{x,y}^{*} (1 + \xi_{x,y}^{2} \delta_{p}^{2})$$

- Larger vertical chromaticity: $\xi_y \approx \frac{L^*}{\beta_v^*}$.
- Higher $\beta_{x,y}$ at the FD:

$$\beta_y(s) = \beta_y^* + \frac{s^2}{\beta_y^*}$$

- Higher-order aberrations and potentialy a need of high-order elements (octupoles, decapoles..).
- Potential collimation issues.

FFS@380 GeV optics was scalled from $L^* = 4.3$ m to $L^* = 6$ m:

L*	\mathcal{L}_{total}	$\mathcal{L}_{\textit{peak}}$	
4.3 m	1.70	0.96	
$(6 \text{m})^2$	1.63	0.93	

The case of 3 TeV:

Design	$\mathcal{L}_{\text{total}} [10^{34} \text{cm}^{-2} \text{s}^{-1}]$	$\mathcal{L}_{1\%}$
$L^* = 3.5 \text{ m}$	7.6	2.4
$L^* = 6 m$	6.4	2.3

Main drawbacks:

• Higher β-functions at the FD:

Larger FD aperture, growth of the high-order aberrations, the optics becomes more sensitive to the magnet imperfections

Stronger sextupoles:

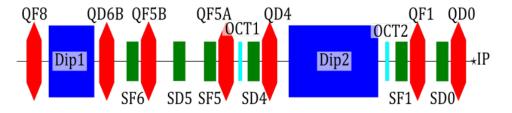
Required to compensate chromaticity growth, potential high-order aberrations

- Potentially, high-order elements (octupoles, decapoles) may be required
- Potential tuning difficulties

It correlates with increased chromaticity, and higher sensitivity to magnet inperfections (especially in the FD)

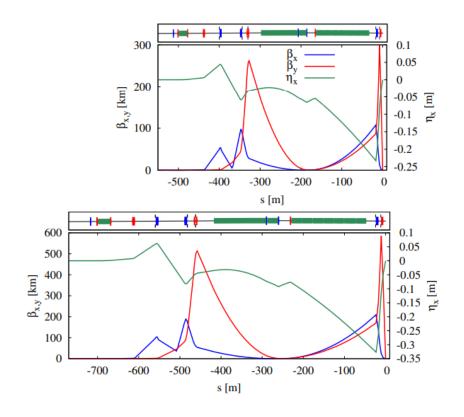
Potential collimation issues

Performance of the collimation and post collision line have to be checked


Work dedicated to the beam dynamics studies with Long L*

- F. Plassard et. al. "Quadrupole-free detector optics design for the Compact Linear Collider final focus system at 3 TeV"
 - -FFS length optimization, sextupole strength matching, dispersion level scan, verification of the collimation properties.
- A. Pastushenko et. al. "The optics design with longer L* for the Final Focus System of CLIC 380 GeV".
 - -FD is shortened to reduce the chromaticity, sextupole strength matching, new dispersion profile, dispersion level scan, verification of the collimation properties.
- V. Cilento et. al. "Dual beam delivery system serving two interaction regions for the Compact Linear Collider".
 - -Design of the BDS with 2 interaction regions, investigation of the solenoid field impact.
- J. Ögren et. al. "Tuning the Compact Linear Collider 380 GeV final-focus system using realistic beam-beam signals"
 - Tuning performance of the design with Longer L*
- R. Bodenstein et. al. "INVESTIGATION OF CLIC 380 GeV POST-COLLISION LINE"

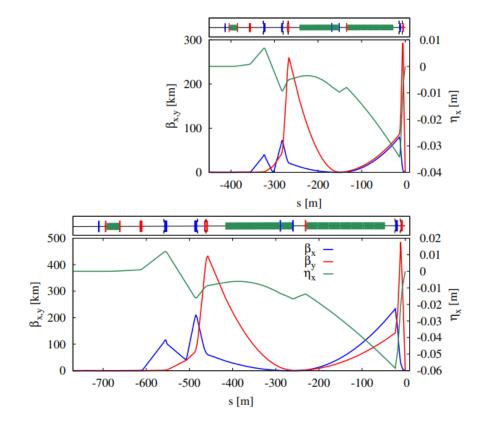
The strategy to optimize the FFS lattice:


- Match the Twiss at the IP.
- Adjust the horizontal chromaticity to be able to correct the chromaticity and 2nd order dispersion simultaniously.
- Match the beam size in Mapclass (5th order) with the sextupoles (there are 6 present in the CLIC lattice).
- 4 Additional optimizations + high-order elements (octupoles, decapoles..) are introduced if needed.
- Adjustment of the dispersion level by scanning the different bending angles.

Final Focus System scheme

CLIC 380 GeV

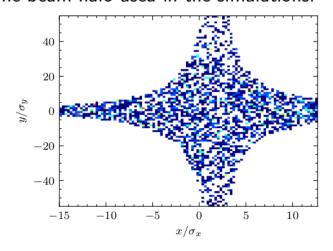
FFS length [m] 770 L^* [m] 6 $\epsilon_{n,x}/\epsilon_{n,y}$ [nm] 950/30 β_x^*/β_y^* [mm]/[μ m] 8/70 σ_x^*/σ_y^* [nm] 145/2.9 σ_z [μ m] 70 δ_p [%] (Uniform distr.) 1.0 \mathcal{L} [10^{34} cm ⁻² s ⁻¹] 1.66 $\mathcal{L}_{1\%}$ [10^{34} cm ⁻² s ⁻¹] 0.96		
$\epsilon_{n,x}/\epsilon_{n,y}$ [nm] 950/30 β_x^*/β_y^* [mm]/[μ m] 8/70 σ_x^*/σ_y^* [nm] 145/2.9 σ_z [μ m] 70 δ_p [%] (Uniform distr.) 1.0 \mathcal{L} [10 ³⁴ cm ⁻² s ⁻¹] 1.66	FFS length [m]	770
$\beta_x^*/\beta_y^* \text{ [mm]/[}\mu\text{m]} 8/70$ $\sigma_x^*/\sigma_y^* \text{ [nm]} 145/2.9$ $\sigma_z \text{ [}\mu\text{m]} 70$ $\delta_p \text{ [%] (Uniform distr.)} 1.0$ $\mathcal{L} \text{ [}10^{34}\text{cm}^{-2}\text{s}^{-1}\text{]} 1.66$	L* [m]	•
σ_x^*/σ_y^* [nm] 145/2.9 σ_z [μ m] 70 δ_p [%] (Uniform distr.) 1.0 \mathcal{L} [10^{34} cm ⁻² s ⁻¹] 1.66	$\epsilon_{n,x}/\epsilon_{n,y}$ [nm]	950/30
σ_{z} [μ m] 70 δ_{p} [%] (Uniform distr.) 1.0 \mathcal{L} [10^{34} cm ⁻² s ⁻¹] 1.66	eta_{x}^*/eta_{y}^* [mm]/[μ m]	8/70
$\sigma_{z} \ [\mu {\rm m}] \ \delta_{p} \ [\%] \ ({\rm Uniform \ distr.}) \ 1.0 \ \mathcal{L} \ [10^{34} {\rm cm}^{-2} {\rm s}^{-1}] \ 1.66$	$\sigma_{x}^*/\sigma_{y}^*$ [nm]	145/2.9
$\mathcal{L} [10^{34} \text{cm}^{-2} \text{s}^{-1}]$ 1.66		70
		1.0
$\mathcal{L}_{1\%} \ [10^{34} \text{cm}^{-2} \text{s}^{-1}] \ 0.96$	$\mathcal{L} \ [10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	1.66
<u> </u>	$\mathcal{L}_{1\%} \ [10^{34} \text{cm}^{-2} \text{s}^{-1}]$	0.96

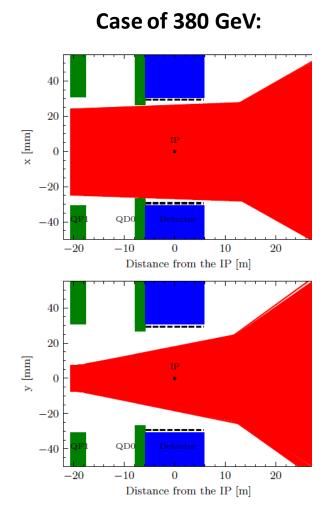


Comparison of the luminosities for the designs with $L^* = 6$ m for CLIC 380 GeV

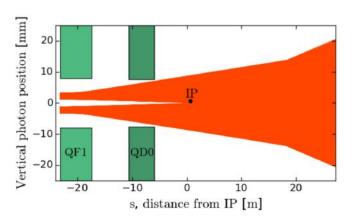
	MAPCLASS			PLACET + Guinea-Pig			
Optics	σ_x^* [nm]	σ_y^* [nm]	σ_x^* [nm]	σ_y^* [nm]	$\sigma_{x,y}$ bandwidth [%]	\mathcal{L}_{total}	\mathcal{L}_{peak}
$\beta_y^* = 100 \; \mu \text{m}$	141.90	3.14	144.22	3.14	0.52	1.63	0.93
$\dot{\beta}_y^* = 70 \ \mu \text{m}$	143.48	2.72	145.78	2.74	0.35	1.66	0.96
$\beta_y^* = 70 \ \mu \text{m}$, Short FD	142.74	2.63	144.72	2.71	0.42	1.66	0.96
$\beta_y^* = 70 \ \mu \text{m}$, Short FD + altern. D_x	142.43	2.45	143.82	2.67	0.3	1.74	1.01

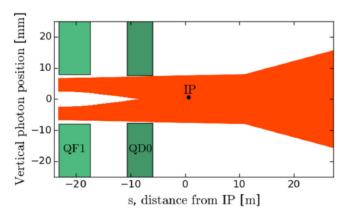
Table 3.1: CLIC 3 TeV design parameters


Table 3.1: CLIC 3 TeV design parameters					
L* [m]	3.5	6			
FFS length [m]	450	770			
Norm. emittance (IP) $\gamma \varepsilon_x / \gamma \varepsilon_y$ [nm]	660 / 20	660 / 20			
Beta function (IP) β_x^*/β_y^* [mm]	7 / 0.068	7 / 0.12			
IP beam size σ_x^*/σ_y^* [nm]	40 / 0.7	40 / 0.9			
Bunch length σ_z [μ m]	44	44			
rms energy spread δ_p [%]	0.3	0.3			
Bunch population $N_e \ [\times 10^9]$	3.72	3.72			
Number of bunches $n_{\rm b}$	312	312			
Repetition rate f_{rep} [Hz]	50	50			
Luminosity $\mathcal{L}_{\text{total}} [10^{34} \text{cm}^{-2} \text{s}^{-1}]$	5.9	5.9			
Peak luminosity $\mathcal{L}_{1\%}$ [10 ³⁴ cm ⁻² s ⁻¹]	2	2			



Design	ξ_y^*	$\frac{\sigma_x^*}{\sigma_x^*^{\text{noSR}}}$	$\frac{\sigma_y^*}{\sigma_y^*^{\text{noSR}}}$	$\mathcal{L}_{ ext{total}}$	$\mathcal{L}_{1\%}$	$rac{\mathcal{L}_{1\%}}{\mathcal{L}_{1\%}^{ ext{noSR}}}$	$\sigma_{y, \mathrm{Oide}}$
			2	$[10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	$[10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	176	[nm]
$L^* = 3.5 \text{ m}$	82027	1.18	1.86	7.04	2.3	0.81	0.92
$\mathrm{L^*}=6~\mathrm{m}$	79913	1.21	1.35	6.5	2.14	0.88	0.45


Collimation with $15\sigma_x X 55\sigma_v$ collimation depth:


The collimation depth has to satisfy the condition that neither beam halo nor emitted photons hit the FD or the detector. The beam halo used in the simulations:

Case of 3 TeV:

Thank you for your attention!