Pair Monitor - for beam profile measurement -Hawaii – KEK - Tohoku

Hitoshi Yamamoto Tohoku University/University of Valencia Nov 25, 2021, WG3 MDI meeting

Location and Configuration

- One disk on each side of IP (in front of BEAMCAL)
- Single-layer silicon pixel detectors (a tracker, not a calorimeter)

Electron-Positron Pairs at IP

Simplified picture

Lab. frame

Pairs are generalted in forward direction. If the opposite bunch is e+,

e+ is deflected while e- is focused.

Reality:

- Beams are ~gaussian with tail
- Crossing angle + anti-DID
- Beam-beam effect

 \rightarrow detailed simulations were performed (w/ CAIN)

Helical motion of a deflected particle

$$p(cm) = pt(MeV)/3B(Tesla)$$

 ϕ (rad) = 3B(Tesla)L(cm)/pz(MeV)

(L: distance from IP, B: solenoid field)

Hit Distribution on Pair Monitor

Parameter	Unit	
Center of mass energy	GeV	500
Number of particles per bunch	$\times 10^{10}$	2.05
Number of bunches per train		2625
Train repetition	Hz	5
Normalized horizontal emittance at IP	mm-mrad	10
Normalized vertical emittance at IP	mm-mrad	0.04
Horizontal beta function at IP	mm	20
Vertical beta function at IP	mm	0.4
Horizontal beam size at IP	nm	639
Vertical beam size at IP	nm	5.7
Longitudinal beam size at IP	μm	300
Crossing angle	mrad	14

Beam parameters to be extracted

Dependence on σ_x (horizontal size)

 $\begin{array}{l} R_{max} \Leftrightarrow \mbox{ maximum } p_t \mbox{ kick} \sim E \mbox{ field of the opposite bunch} \\ \sim 1/\sigma_x \end{array}$

For fixed number of particles per bunch, Smaller $\sigma_x \rightarrow$ larger E field \rightarrow larger R_{max}

Dependence on σ_v (vertical size) is weak

Dependence on σ_y (vertical size)

Azimuthal hit distribution for $R > 0.5 R_{max}$ The dip for $f \sim 0$ is due to the hole for the incoming beam

Dependence on σ_y (vertical size)

 N_0/N_{all} has some sensitivity on σ_y . It also depends on σ_x , but it is well constrained by R_{max} .

 $\begin{array}{l} N_{all} \text{ is sensitive to } \sigma_y \\ \sim \text{ inversely correlated} \end{array}$

Matrix Method

Solve numerically and iteratively J. Yan

Matrix Method

With improved measurement variables:

$$X = (\sigma_x, \sigma_y, \Delta_y) \qquad \Delta_y: \text{ unit is } \sigma_y$$
$$M = (R_{shl}, \frac{N_{D1}}{N_{all}}, \frac{N_U}{N_{D2}}, \frac{1}{N_{all}})$$

$$\begin{array}{l} R_{shl}: \mbox{radius containing } 97.5\% \mbox{ of all hits} \\ N_U : 0.3 \ R_{shl} < R < 0.8 \ R_{shl} & \& \ 0.8 < \varphi < 1.6 \\ N_{D1}: \ 0.6 \ R_{shl} < R < 0.8 \ R_{shl} & \& \ (-\pi < \varphi \ < -2.0, \ 2.8 < \varphi < \pi) \\ N_{D2}: \ 0.3 \ R_{shl} < R < 0.6 \ R_{shl} & \& \ (-\pi < \varphi \ < -2.0, \ 2.8 < \varphi < \pi) \end{array}$$

	Pair- monitor	BeamCal	Pair-monitor + BeamCal
$\sigma_{\rm x}$	3.2 %	4.1 %	2.8 %
σ_{y}	10.1%	15.6 %	8.6 %
$\Delta_{ m y}$	8.0 %	9.4 %	7.4 %

3D Pixel Sensor

- Pole electrodes transverse to the sensor plane.
- Drift field parallel to the sensor plane.

Merits:

Fast: signal pulse 1/10 of typical pixel sensor. $V_{depletion} \sim 5V$ (low!). Radhard. Flexible geometry (e.g. trapisoid). Active all the way to the edge (no guard rings).

Drawbacks:

Requires a special etcher. (STF) Technology not fully established.

 \rightarrow Monolithic SOI for future

3D Pixel Sensor for Pair Monitor

 $R_{max} \sim beam current$ \rightarrow Inner radius should be as small as possible

For Pair Monitor Sensor Pitch 100 ~ 400 μ m Thickness ~ 200 μ m D_{electrode} ~ 25 μ m

Actual Prototype Fabricated by U. Hawaii Need RO chip (next) for testing

Readout

Spec:

- Number of cells $\sim 200,000$
- Count hits for 16 time slices in one train by 8-bit counter
 (2600 bunches / train) /16 = ~160 bunches integrated for each time slice
- Transmit data during inter-train gap (200 ms)

CMOS test chip

SOI Test Chip

OKI 0.2µm FD-SOI CMOS process

h1 1.00 V Ω h3 50.0mVΩ

Current Status

- Hardware R&Ds are not progressing well. (funding!)
- Machine learning for extraction of beam parameters is being studied.