Pair Monitor - for beam profile measurement - Hawaii – KEK - Tohoku

Hitoshi Yamamoto Tohoku University/University of Valencia Nov 25, 2021, WG3 MDI meeting

Location and Configuration

- One disk on each side of IP (in front of BEAMCAL)
- Single-layer silicon pixel detectors (a tracker, not a calorimeter)

Electron-Positron Pairs at IP

Simplified picture

Lab. frame

 \mathbf{y} hit point on monitor $P_{\rm t}$ \Rightarrow x beam

Helical motion of a deflected particle Pairs are generalted in forward direction.

If the opposite bunch is e+,

e+ is deflected while e- is focused.

Reality:

- Beams are \sim gaussian with tail
- Crossing angle $+$ anti-DID
- Beam-beam effect

 \rightarrow detailed simulations were performed (w/ CAIN)

- ρ (cm) = pt(MeV)/3B(Tesla)
- ϕ (rad) = 3B(Tesla)L(cm)/pz(MeV)

 $(L: distance from IP, B: solenoid field)$

Hit Distribution on Pair Monitor

Beam parameters to be extracted

Dependence on σ_x **(horizontal size)**

 $R_{\text{max}} \Leftrightarrow$ maximum p_t kick ~ E field of the opposite bunch $\sim 1/\sigma_{\rm v}$

For fixed number of particles per bunch, Smaller $\sigma_x \rightarrow$ larger E field \rightarrow larger R_{max}

Dependence on σ_y (vertical size) is weak

Dependence on σ_y **(vertical size)**

Azimuthal hit distribution for $R > 0.5 R_{max}$ The dip for $f \sim 0$ is due to the hole for the incoming beam

Dependence on σ_y **(vertical size)**

 N_0/N_{all} has some sensitivity on σ_y .

It also depends on σ_x , but it is well constrained by R_{max} .

 N_{all} is sensitive to σ_{y} \sim inversely correlated

Matrix Method

Solve numerically and iteratively $J.$ Yan

Matrix Method

With improved measurement variables:

$$
X = (\sigma_x, \sigma_y, \Delta_y) \qquad \Delta_y: \text{unit is } \sigma_y
$$

$$
M = (R_{shl}, \frac{N_{D1}}{N_{all}}, \frac{N_U}{N_{D2}}, \frac{1}{N_{all}})
$$

$$
Rsh1
$$
: radius containing 97.5% of all hits NU : 0.3 R_{sh1} < R < 0.8 R_{sh1} & 0.8 < φ < 1.6 $ND1$: 0.6 R_{sh1} < R < 0.8 R_{sh1} & (−π < φ < −2.0, 2.8 < φ < π) $ND2$: 0.3 R_{sh1} < R < 0.6 R_{sh1} & (−π < φ < −2.0, 2.8 < φ < π)

3D Pixel Sensor

- Pole electrodes transverse to the sensor plane.
- Drift field parallel to the sensor plane.

Merits:

Fast: signal pulse 1/10 of typical pixel sensor. $V_{\text{depletion}}$ ~ 5V (low!). Radhard. Flexible geometry (e.g. trapisoid). Active all the way to the edge (no guard rings).

Drawbacks:

Requires a special etcher. (STF) Technology not fully established.

 \rightarrow Monolithic SOI for future

3D Pixel Sensor for Pair Monitor

 $R_{\text{max}} \sim \text{beam current}$ Need RO chip (next) for testing \rightarrow Inner radius should be as small as possible

For Pair Monitor Sensor Pitch $100 \sim 400 \mu m$ Thickness $\sim 200 \ \mu m$ $D_{\text{electrode}} \sim 25 \text{ }\mu\text{m}$

Actual Prototype Fabricated by U. Hawaii

Readout

Spec:

- Number of cells \sim 200,000
- Count hits for 16 time slices in one train by 8-bit counter (2600 bunches / train) $/16 = -160$ bunches integrated for each time slice
- Transmit data during inter-train gap (200 ms)

CMOS test chip

SOI Test Chip

OKI 0.2mm FD-SOI CMOS process

Ch1 1.00 V Q

Amplifier 8-bit counter Cell selection

Current Status

- Hardware R&Ds are not progressing well. (funding!)
- Machine learning for extraction of beam parameters is being studied.