

Compact LumiCal prototype tests for future e⁺e⁻ collider

Veta GHENESCU

Institute of Space Science, Bucharest, ROMANIA

[on behalf of the FCAL Collaboration]

Overview

- Forward region in LC Experiments
- Thin LumiCal module design
- LumiCal prototype performance in beam-test
 - Beam-test setup
 - Results
- Conclusions and Future Steps

Forward region in LC Experiments

Two specialized calorimeters are foreseen:

- LumiCal precise integrated luminosity;
- BeamCal fast luminosity estimate and beam parameters control;

Both forward calorimeters improve the hermeticity of the main detector at very small polar angles.

The very forward region of the ILD detector.

	Parameters		ILC (ILD)	CLICdet
LumiCal	geometrical acceptance	[mrad]	31 - 77	38 - 110
	fiducial acceptance	[mrad]	41 - 67	44 - 80
	z (start from IP)	[mm]	2480	2539
	number of layers (W + Si)		30	40
BeamCal	geometrical acceptance	[mrad]	5 - 40	10 - 40
	z (start from IP)	[mm]	3200	3181
	number of layers (W + sensor)		30	40

The layout of the CLICdet forward region.

Forward region in LC Experiments

- The LumiCal is a Si-W electromagnetic sandwich calorimeter;
- 30 W absorber layers at ILC (40 at CLIC) interspersed with very thin detector planes;
- □ It is designed to measure the integrated luminosity with a precision better then 10⁻³ for ILC and 10⁻² for CLIC;

Main features of silicon sensor prototype produced by Hamamatsu:

- 6-inch wafer;
- 320 μm thickness;
- 4 azimuthal sectors in one tile, each 7.5 degrees;
- Radially segmented 64 pads with 1.8 mm pitch;
- 12 tiles make full azimuthal coverage.

ISS

Thin LumiCal Module

Dimensions 140 x 140 x 3.5 mm

Good flatness ~30 μm observed

20

3.52

3.51

100 120 140

X [mm]

3.52

3.51

120 140

X [mm]

80 100

20

Beam-test campaigns – 2014@CERN PS, 5GeV, e-/μ

DUT (LumiCal multi-layer prototype):

- 4 LumiCal detector planes;
- 4.5 mm between W plates;
- 8-ch. FE&ADC ASICs readout, 32 channels readout;

Telescope (developed by the Aarhus University):

- □ 4 MIMOSA26 chips with 1152x576 pixels
- 21.2x10.6 mm² active area;
- custom DAQ system;

Trigger scintillators:

- 2 solid scintillators with 5x5 mm² upstream and downstream to the telescope;
- one scintillator with 9 mm diameter circular hole;

Beam-test campaigns – 2016@DESY

Test beam infrastructure @ DESY-II:

- Electron beam 1 5 GeV energy;
- Dipole magnet 1–13 kGs for e/γ separation;
- EUDET telescope based on MIMOSA detectors;
- DAQ framework provided:
 - EUDAQ (software);
 - Trigger Logic Unit (hardware);
 - Very good user support.

DUT (LumiCal multi-layer prototype):

- ☐ First thin LumiCal detector module;
- 8 Si sensors with 256 equipped channels;
- 2 Si sensors used as a tracker;
- FEB: APV-25 hybrid chip based;

Beam-test campaigns – 2020@DESY

Test beam infrastructure @ DESY-II:

- Electron beam 1 5 GeV energy;
- Beam spot after the collimator ~5mm x 5mm;
- Two scintillator triggers operating in coincidence mode;
- Telescope based on 5 ALPIDE planes;

DUT (LumiCal multi-layer prototype):

- LumiCal setup built of Si sensors intersperse with W plates;
- 15 Si sensors with 128 equipped channels;
- Readout boards:
 - 3 FLAME readout boards;
 - 8 APV-25 chip hybrid boards;

Beam-test campaigns

Goals:

- Tests and demonstration of multi-plane operation of the forward detector prototype;
- Study of the electromagnetic shower in a precise and well known structure and comparison with MC simulations;
- Measurement of Molière radius;
- Study of e-/γ identification using bremsstrahlung;
- Energy and spatial resolution studies;
- Polar angle bias study;

Results - LumiCal energy response

Energy deposited distribution in LumiCal prototype for different beam energy - fitted with Gaussian distribution function.

Average total energy deposited in LumiCal prototype as a function of beam energy before (red) and after (blue) APV25 front-end chip calibration. The lower part shows the ratio of the E_{dep} to the straight line.

Results – longitudinal shower

Longitudinal shower profile, comparison between data and simulation.

Depth(Layer)

12

Results – transverse shower

☐ The function used to describe the average transverse energy profile of the shower is:

$$F_E(r) = A_C e^{-\left(\frac{r}{R_C}\right)^2} + A_T \frac{2r^{\alpha} R_T^2}{\left(r^2 + R_T^2\right)^2}$$
 (1)

where: r is the distance from the shower center; A_C ; A_T ; R_C ; R_T ; α are the fit parameters.

- The fitting range corresponds to the area connected to readout.
- \Box The parameters of $F_E(r)$ are fixed by both test-beam data and MC simulation.
- \square The Molière radius, R_M , is a characteristic constant of a stack of materials. By definition, it is the radius of a cylinder with axis coinciding with the shower axis, containing on average 90% of the energy deposition of the shower.
- \square The Molière radius, R_M , can be found from the equation:

$$0.9 = \int_0^{2\pi} d\varphi \, \int_0^{R_M} F_E(r) \, r dr \tag{2}$$

09.12.2021

Results – transverse shower

The integral on $F_E(r)$, that was extracted from the fit, as a function of the radius, R, in units of pads (1,8mm). The insert shows an expanded view of the region 2 < R < 6 pads

2014@CERN [Eur. Phys. J. C (2018) 78:135]:

 R_M = 24.0 ± 0.6 (stat.) ± 1.5 (syst.) mm,

2016@DESY [Eur. Phys. J. C79 (2019) 579]:

 $R_M = 8.1 \pm 0.1 \text{ (stat)} \pm 0.3 \text{ (syst))} \text{ mm}$

09.12.2021

The effective Moli`ere radius as a function of the e- energy for data (blue) and simulation (red).

Results – transverse shower

6 configurations has been done to study the shower development in the entire calorimeter using only 3 FLAME boards, the boards were successively connected to the different sensor layers.

A lego plot of the transvers profile for each layer from the beam-test data

The integral on $F_{\rm F}(r)$, that was extracted from the fit, as a function of the distance in units of pads (1,8mm) for 5 GeV e-beam.

LumiCal stack configurations

The effective Moli'ere radius has been estimated to be 10.1 mm (5.6 pads)

Conclusions and Future Steps

- Major components developed by FCAL Collaboration can be operated as a system in the future LC experiments.
- □ The FCAL collaboration continues the detector R&D and forward region design optimisation.
- □ Thin LumiCal module with submillimeter thickness was developed and produced. Its geometry meets requirements of LumiCal conceptual design.
- Dedicated FLAME readout ASIC together with FPGA back-end were developed and for the first time tested on beam.
- Results from the test of the compact calorimeter demonstrator are promising.
- □ Analysis of data and MC from the full compact calorimeter prototype test beam is ongoing.
- Technologies developed in FCAL are applied in other experiments, e.g. CMS, XFEL and considered for LUXE at DESY.

THANK YOU FOR YOUR ATTENTION

Acknowledgements:

This activity was partially supported by the Romanian UEFISCDI agency under grant no. 16N/2019. These studies were partly supported by the Israel Science Foundation (ISF), Israel German Foundation (GIF), the I-CORE program of the Israel Planning and Budgeting Committee, Israel Academy of Sciences and Humanities, by the National Commission for Scientific and Technological Research (CONICYT - Chile) under grant FONDECYT1170345, by the Polish Ministry of Science and Higher Education under contract nrs 3585/H2020/2016/2 and 3501/H2020/2016/2, by the Ministry of Education, Science and Technological Development of the Republic of Serbia within the project Ol171012, by the United States Department of Energy, grant de-sc0010107, and by the European Union Horizon 2020 Research and Innovation programme under Grant Agreement no.654168 (AIDA-2020). The measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF).

Back up slides

☐ The transverse size of the shower is characterized by the Molière radius and it can be estimated using the following formula:

$$\frac{1}{R_M} = \frac{1}{E_S} \sum \frac{w_j E_{cj}}{X_{0j}} = \sum \frac{w_j}{R_{Mj}}$$

 R_M of a stack of $1X_0$ tungsten absorber plates as a function of the air gap between them