

Comparison between theoretical predictions and measurements of luminosity background in the Belle II Silicon Vertex Detector

王子涵·WANG Zihan

The University of Tokyo

For ILC International Development Team - WG3 meeting

2022.01.06

SuperKEKB

- e^+e^- collider with \sqrt{s} @ $\Upsilon(4S)$ resonance
- Asymmetric energy for electron beam (HER, 7 GeV) and positron beam (LER, 4 GeV)
- Target peak luminosity: 6.5×10³⁵ cm⁻² s⁻¹ (30 times of KEKB)
 - 0.38×10^{35} cm⁻² s⁻¹ achieved in 2021 run

Belle II Vertex Detector

- Belle II Vertex Detector is placed at innermost of Belle II detector, mainly responsible for decay vertex detection and tracking
 - Layer 1~2: Pixel Detector (PXD)
 - Layer 3~6: Silicon Vertex Detector (SVD)
- This study uses data from 4 SVD layers
- SVD
 - Double-sided Silicon Strip Detector (DSSD)
 - Providing 2-D spatial information
 - Low material budget: 0.7% X₀ per layer
 - 172 DSSD sensors in total, with sensor area being 1.2 m² and 224k readout strips

Belle II vertex detector

Structure of Belle II SVD

- 4 layers (Named as Layer 3~6)
- Each layer consists of 7~16 ladders.
- Each ladder consists of 2~5 DSSD sensors
- 172 sensors in total

Beam Background sources

- Single-beam background (Beam-particle scattering)
 - Touschek effect
 - Intra-bunch scattering
 - Rate $\propto I \cdot \frac{I/n_b}{\sigma_x \sigma_y \sigma_z}$
 - Beam-gas scattering
 - Beam-gas scattering including Coulomb scattering and Bremsstrahlung
 - Rate $\propto I \cdot P$
 - Other sources: synchrotron radiation etc.
 - Neglectable when calculating SVD occupancy
- Luminosity backgrounds (Colliding beams)
 - $ee \rightarrow eell$ via two photon process
 - Radiative Bhabha

• Rate $\propto \mathcal{L}$

I: beam current σ_x : beam size in x direction σ_{v} : beam size in y direction

 σ_z : bunch length

 n_b : # of bunches *P*: pressure inside beam-pipe

Motivation

- High occupancy introduced by beam background degrades the performance of tracking system and takes up precious bandwidth for DAQ system
- Simulation near target peak luminosity ($\mathcal{L}^{MC} = 8 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$) shows the average occupancy in Layer 3 (nearest to beam pipe) is very close to the 3% limit.
 - Discrepancy between single-beam BG MC and data with a factor of 0.8~5 observed.
 - Occupancy estimates are corrected by those factors
- It's important to know the discrepancy of MC from data for luminosity component

Analysis strategy and dataset

• 2021.06.16 beam background study data

- Luminosity BG could only be measured when beams collide, with interference from single-beam BG
- Inject only one beam (LER or HER) to study the single-beam BG

• LER & HER single-beam period for single-beam background study

- Collide LER with HER. Subtract single-beam BG contribution from total occupancy by extrapolating single-beam study results to collision period. The remaining occupancy is from luminosity BG.
- Scale luminosity background occupancy in MC to current luminosity level and compare with experimental data

Occupancy of experimental data

Calculate Data/MC ratio of average occupancy to describe this discrepancy

Modeling of single-beam BG

• For each sensor, fit occupancy to single beam BG model:

$$\mathcal{O}_{\text{singlebeam}}(I, P, \sigma, n_b | T, B) = T \cdot \frac{I^2}{\sigma_x \sigma_y \sigma_z n_b} + B \cdot IP$$

- Beam parameters (I, P, σ, n_b) can be monitored/calculated in real time
- Verifying beam current (I) and number of bunches (n_b) to separate Touschek and Beam-gas components
- Fitting results are extrapolated to collision period to estimate single-beam BG contribution during collision.

I: beam current σ_x : beam size in x direction σ_y : beam size in y direction σ_z : bunch length n_b : # of bunches *P*: pressure inside beam-pipe

Simulation of luminosity BG

Luminosity BG analysis procedure

 $\mathcal{L}^{MC} = 8 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$

In Collision period:

$$\mathcal{O}_{data}(i) = O_B^{LER}(i) + O_B^{HER}(i) + a \cdot O_T^{LER}(i) + b \cdot O_T^{HER}(i) + \frac{\mathcal{L}^{Fit}}{\mathcal{L}^{MC}} \cdot O_{LUMI}^{MC}(i)$$

- *i* : index of SVD sensor
- $O_{data}(i)$: occupancy of ith sensor
- $O_B^{LER(HER)}(i)$: LER(HER) Beam-gas background occupancy on ith sensor, extrapolated from single-beam study
- $O_T^{LER(HER)}(i)$: LER(HER) Touschek background occupancy on ith sensor, extrapolated from single-beam study
- O^{MC}_{LUMI}(i): luminosity background occupancy on ith sensor, from MC
- Fit to the occupancy of all 172 sensors with three floating parameters : \mathcal{L}^{Fit} , a, b
- By comparing \mathcal{L}^{Fit} with measured luminosity, one can calculate Data/MC ratio
- *a* and *b* (LER/HER Touschek scaling factor) represent the difference of Touschek occupancy with/without collision

Single-beam background distribution versus Z

 $\mathcal{O}_{data}(i) = \mathcal{O}_{B}^{LER}(i) + \mathcal{O}_{B}^{HER}(i) + a \cdot \mathcal{O}_{T}^{LER}(i) + b \cdot \mathcal{O}_{T}^{HER}(i) + \frac{\mathcal{L}^{Fit}}{\mathcal{L}^{MC}} \cdot \mathcal{O}_{LUMI}^{MC}(i)$

- Extrapolated single-beam background occupancy distribution versus Z
- LER BG peaks in FW direction while HER BG peaks in BW direction @ Layer 4,5,6
 - LER (HER) is injected into IP chamber from FW (BW) direction
 - LER and HER components can be separated by fitting

Single-beam background distribution versus ϕ

- Extrapolated single-beam background occupancy distribution versus ϕ
- LER (positron beam) backgrounds dominate
- Single-beam background peaks in –X direction @ Layer 4,5,6
 - Beams are injected into IP chamber from –X direction

 $\mathcal{O}_{data}(i) = O_B^{LER}(i) + O_B^{HER}(i) + a \cdot O_T^{LER}(i) + b \cdot O_T^{HER}(i) + \frac{\mathcal{L}^{Fit}}{\mathcal{L}^{MC}} \cdot O_{LUMI}^{MC}(i)$

Luminosity background distribution versus ϕ

- Simulated luminosity background occupancy distribution versus ϕ
- Luminosity BG peaks in +X direction

Laver4

- Center of mass momentum is >0 in X direction
- Given that single beam components peak in –X @L456, Luminosity BG can be separated from Single beam BG by fitting

2022/01/06

+X direction:

Lavers

1.2

2VD occupancy [%] 8.0 0.6 0.4 0.4

0.2

0.0

Occupancy fitting

$$\mathcal{O}_{data}(i) = \mathcal{O}_B^{LER}(i) + \mathcal{O}_B^{HER}(i) + a \cdot \mathcal{O}_T^{LER}(i) + b \cdot \mathcal{O}_T^{HER}(i) + \frac{\mathcal{L}^{Fit}}{\mathcal{L}^{MC}} \cdot \mathcal{O}_{LUMI}^{MC}(i)$$

• Shape of fit result agrees well with the shape of experimental data

Fit results

$$\mathcal{O}_{data}(i) = O_B^{LER}(i) + O_B^{HER}(i) + a \cdot O_T^{LER}(i) + b \cdot O_T^{HER}(i) + \frac{\mathcal{L}^{Fit}}{\mathcal{L}^{MC}} \cdot O_{LUMI}^{MC}(i)$$

- FitLumi(\mathcal{L}^{Fit}) shows the same trend as measured luminosity
- LER Touschek scaling factor (a) is close to 1
- HER Touschek scaling factor (b) suffers from large fluctuation
 - HER single-beam BG contribution is very small

Data/MC ratio for luminosity BG

- FitLumi ∝ MeasuredLumi (intercept is fixed at 0)
- Average occupancy in Data = occupancy in MC scaled to fitLumi
- Average occupancy in MC = occupancy in MC scaled to MeasuredLumi
- Using the above formula,

$$\frac{\text{Data}}{\text{MC}} \equiv \frac{\text{average occupancy in Data}}{\text{average occupancy in MC}} = \frac{\text{FitLumi}}{\text{MeasuredLumi}}$$

•
$$Data/MC = 0.74$$

Results of three luminosity BG studies

- Luminosity background was studied three times in May 2020, June 2020 and June 2021
- Data/MC seems to converge to 0.75
- LER Touschek scaling factor (a) seems to converge to 1
- HER Touschek scaling factor (b) is suffering from large fluctuation
 - Occupancy contributed by HER single-beam BG is very small

Dataset	June2021	June 2020	May 2020
Data/MC	0.74	0.74	0.75
a (average)	1.04	1.02	0.73
b (average)	0.95	0.55	1.21

$$\mathcal{O}_{data}(i) = O_B^{LER}(i) + O_B^{HER}(i) + a \cdot O_T^{LER}(i) + b \cdot O_T^{HER}(i) + \frac{\mathcal{L}^{Fit}}{\mathcal{L}^{MC}} \cdot O_{LUMI}^{MC}(i)$$

Summary

- Luminosity background was measured and compared with theoretical predictions
- Luminosity background still small compared to single-beam background.
- Shapes of overall background distributions in data and MC agree well
- However, measured luminosity background normalization 25% smaller than predicted
- This discrepancy is not yet understood
- Data with higher luminosity is desired to verify this method of comparison

Traditional method

Traditional

• Layer 3 average occupancy from luminosity background:

$$\mathcal{O}_{lumi}(\propto \mathcal{L}) \equiv \mathcal{O}_{data} - a \cdot O_T^{LER} - b \cdot O_T^{HER} - O_B^{LER} - O_B^{HER}$$

- \mathcal{O}_{data} : layer3 average occupancy of real data
- $O_T^{LER(HER)}$: occupancy of LER(HER) Touschek component, derived from single-beam analysis
- $O_B^{LER(HER)}$: occupancy of LER(HER) Beam-gas component, derived from single-beam analysis
- *a* and *b* (LER/HER Touschek scaling factor):
 - Representing the difference of Touschek occupancy with/without collision
 - Beam optics may change between the single-beam and the collision
- Perform single-beam fit for total beam loss rate $-\frac{dI}{dt} = O_{\text{single}}(I, P_{mean}, \sigma, n_b | B'_i, T')$
- Compare measurement during collision and single beam fit results
- Take any difference as the Touschek scaling factor a and b (average over time)

Beam lifetime fit

- *a,b* = <(beam_loss_rate@collision BeamGasFit) / TouschekFit>
- LER Touschek scaling factor a = 1.07
- HER Touschek scaling factor b = 1.17

Luminosity BG estimation

- LER Touschek scaling factor a = 1.07
- HER Touschek scaling factor b = 1.17
- Data/MC = 0.34~0.95. Large disagreement between decay and injection data

