(Compton) Polarimetry at ILC

Aurélien MARTENS (IJCLab Orsay) With major help from Jenny List (DESY) and material from her colleagues

Polarimetry at ILC

Mostly interest in knowledge of longitudinal polarization at IP

- Ultimately can be extracted from the collected data at IP from known helicity dependence of SM crosssections
- Can exploit Total/Differential/Angular cross-sections

 $P_z(t)\mathcal{L}(t)dt$

Still independent measurement of beams polarization is welcome \rightarrow Compton polarimeters

- Improves determination of longitudinal polarization for physics
- Major operational/quality aspects
 - Spot anything bad immediately
 - Polarisation reversal accuracy
 - Machine optimization

Not obvious !

 $\langle P_z \rangle_{IP}$

- Intrinsic systematics
- Beam transport
- Beam-beam effects at IP
- Lumi-weighting...

Beam polarisation determination with total x-section w/ and w/o polarimeter constraint

Current strategy

Goal for ILC polarimetry: per mille level precision by combining

- (1) Compton polarimeter measurements upstream and downstream of the e^+e^- interaction point
- (2) Spin tracking to relate these measurements to the polarization at the e^+e^- interaction point
- (3) Long-term average determined from e^+e^- collision data as absolute scale calibration

Relate Up/down-stream measurements to

- Calibrate spin tracking w/o collisions at IP
 - Beam angular alignments and spin rotators alignment crucial
- Calibrate beam-beam effects w/ collisions at IP
 - collision parameters
 - Luminosity
 - Spent beam sampling

Contribution	$\delta \mathcal{P}_z/\mathcal{P}_z \ [10^{-3}]$
Beam and polarisation alignment at polarimeters	0.72
(assuming $\Delta \vartheta_{\text{bunch}} = 50 \mu \text{rad}, \Delta \vartheta_{\text{pol}} = 25 \text{mrad}$)	
Random misalignments $(10 \mu m/\mu rad)$ with beam orbit correction	0.35
Variation in beam parameters $(10\%$ in the emittances)	0.03
Longitudinal precession in detector magnets	0.01
Bunch rotation to compensate the beam crossing angle	< 0.01
Emission of synchrotron radiation	0.005
Total	0.80

Table 10: Contributions to the uncertainty of the spin transport from the upstream to the downstream polarimeter for a beam energy of 250 GeV in the absence of collisions.

TDR error budget

	$\delta \mathcal{P}/\mathcal{P}$	
source of uncertainty	SLC	ILC goals
laser polarisation	0.1%	0.1%
detector alignment	0.4%	0.15 - 0.2%
detector linearity	0.2%	0.1%
electronic noise and beam jitter	0.2%	0.05%
Total	0.5%	0.25%

Improvements related to

- Alignment precision (validated in testbeam)
- Detector non-linearity (in situ-calibration technique validated)
- DAQ hardware (validated in testbeam)
- Beam jitter (related to ILC luminosity goals)

Laser polarization at same level as SLC but still requires careful control

Involved processes $e\gamma \rightarrow e\gamma$, $e\gamma \rightarrow eee$, $e\gamma \rightarrow e\gamma\gamma$

QED corrections

QED corrections about 0.5% @ 500 GeV

Not included (yet) in polarimeter Monte-Carlo

Compton polarimetry at ILC - ILC-IDT-WG3 MDI

TDR design of polarimeters

TDR's design need to be adapted to actual location

- Radiation hardness
- Beam transport
- Beam pointing stabilization issues

Chicanes

- Fixed detector acceptance
- Moving e-/laser beam IP
- upstream@1800m: 30µJ/laser pulse
- downstream@150m: 100mJ/pulse @ 5Hz

downstream

Recent proposal about lasers

Took note that laser technology has evolved

- Upstream: industrial robust and compact systems, every bunch can be measured
- Downstream: may require work on robustness ?

Possibly to insert those in service tunnels

• Would require further investigations

Compton polarimetry at ILC - ILC-IDT-WG3 MDI

Detector

Laser polarization shaping and control

P06006 (2010), Zomer HDR (2003)

Baudrand PhD thesis (2007)

ഹ

Brisson JINS⁻

6806 (1995),

Poirson et al. Applied Optics 34

lacquet HDR (2009),

Ongoing developments at Orsay

Avoid DC measurements by investigating a lock-in detection:

- ~50kHz elasto-optic modulators
- Balanced, lock-in, photo-detection

Slowly starting activity

- SuperKEKB upgrade
- French ANR proposal submitted

ILC-dedicated studies needed?

 \rightarrow Manpower + hardware needs

Conclusion

A lot of work made by DESY group (J. List) on nearly all aspects related to polarimetry

- Extraction with e+e- data
- Compton polarimeter design and integration
- Very detailed simulations
- Detectors, including very low systematics validated

Few points to complement maybe ?

- Laser systems re-design in view of modern technologies and actual location
- Laser polarization control and monitoring (model update, experimental setup validation)
- Downstream polarimeter may benefit from a design review (once ILC gets build)
- Overall review and update of implementation ?

Exploit 'synergies' with other projects

- LUXE project at DESY
- SuperKEKB upgrade proposal (contribution by IJCLab)