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Polarimetry at ILC

Mostly interest in knowledge of longitudinal polarization at IP

Ultimately can be extracted from the collected data at IP from known helicity dependence of SM cross-

sections

Can exploit Total/Differential/Angular cross-sections

Still independent measurement of beams polarization is welcome - Compton polarimeters

Improves determination of longitudinal polarization for physics
Major operational/quality aspects

«  Spot anything bad immediately Beam polarisation determination with total x-section
e Polarisation reversal accuracy w/ and w/o polarimeter constraint
* Machine optimization &
=
Not obvious ! a
* Intrinsic systematics 0°
* Beam transport <
* Beam-beam effects at IP
* Lumi-weighting...
= 350 GeV
P L sz(f)ﬁ(f)df = 250 GeV
< Z > I[P — f f,( f} dt 0 5

LCC Phys WG arXiv:1801.02840, List @ALCW 2015, R. Karl PhD thesis (10.3204/PUBDB-2019-03013)
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Bartels et al., JINST 7 P01019 (2012), Boogert JINST 4 P10015 (2009), List @ALCW 2015,

Beckmann et al 2014 JINST 9 PO7003

Current strategy

Goal for ILC polarimetry: per mille level precision by combining

@ spin track,ng © downstream Spin Transport At Linear Colliders
- A polarimeter
@ upstream *-Orﬂ *,—J ‘M'
o _Polarimeter Fete-
H_%j-ﬂ%_#—— collisions "‘--Mﬂxﬂ__ﬁ
e et particle / spin transport along the BDS Bmad
(1) Compton polarimeter measurements upstream and polarimeter simulation | |beam-beam collision | polarimeter simulation
downstream of the eT e~ interaction point LCPoIMC i G“'"ea'Pf” Lcr°'MC
Y
(2) Spin tracking to relate these measurements to the polarization | data analysis |
at the eT e~ interaction point
i Contribution P,/ P, [1079]
3: [_ong—term average determined from e+ e collision data as Beam and polarisation alignment at polarimeters 0.72
. . (assuming Adpyne, = 50 prad, Ay, = 25 mrad)
abSOIUte Scale Ca|lbratI0n Random misalignments (10 pzm/jirad) with beam orbit correction 0.35
Variation in beam parameters (10% in the emittances) 0.03
Longitudinal precession in detector magnets 0.01
Bunch rotation to compensate the beam crossing angle < 0.01
Emission of synchrotron radiation 0.005
Relate Up/down-stream measurements to Total 050
n Ca I i brate Spi n tracki ng W/O Col | isions at I P Table 10: Contributions to the uncertainty of the spin transport from the upstream to

the downstream polarimeter for a beam energy of 250 GeV in the absence of collisions.

* Beam angular alignments and spin rotators
: - no energy spread/loss
alignment crucial RDR, TDR, TDR: RDR TDR TDR*
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° Spent beam Sampllng - ! after collision

o DP measurable (o,,=0.1/0.2/0.5/1.0 mm)
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TDR error budget

oP /P
source of uncertainty SLC  ILC goals
laser polarisation 0.1% 0.1%
detector alignment 0.4% 0.15 -0.2%
detector linearity 0.2% 0.1%
electronic noise and beam jitter 0.2% 0.05%
Total 0.5% 0.25%

Improvements related to
* Alignment precision (validated in testbeam)

* DAQ hardware (validated in testbeam)
* Beamjitter (related to ILC luminosity goals)

* Detector non-linearity (in situ-calibration technique validated)

Laser polarization at same level as SLC but still requires careful control
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Involved processes ey =2 ey, eyeee, ey eyy
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2 Not included (yet) in polarimeter Monte-Carlo
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2 I'DR design of polarimeters
o
o
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Recent proposal about lasers

Laser specifications

Took note that laser technology has evolved
* Upstream: industrial robust and compact systems, every
bunch can be measured
* Downstream: may require work on robustness ?

Applications

Possibly to insert those in service tunnels
*  Would require further investigations

A

www amplituda-laser.com
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Movable Laser Beam
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Detector

150 cm z(em) Y Ve S o
Cherenkov photons

20 identical channels b
diameter: 10 mm

Cherenkov
hodoscopes
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In-situ calibration principle validated

simulation

Vormvald et al., JINST 11 P01014 (2016), List et al., JINST 10 P05014 (2015)

ulll[llllllllllll]ll L)

Alternative using Quartz crystals studied:
(;°B°C " | -> data-driven gain calibration possible
gain calibration ns —> Option for the upstream polarimeter
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Laser polarization shaping and control

IP

D

. HBS
Typical scheme
OQ\HBS QWP
CCD
g Telescope

Wollaston

PD |

o balanced PDs
® &
Box with rough temperature control

Jacquet HDR (2009), Baudrand PhD thesis (2007)

°F 3T 1 15

Poirson et al. Applied Optics 34 6806 (1995), Brisson JINST 5 PO6006 (2010), Zomer HDR (2003),

0; (degrees)
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A .
n, — nje = kx + E[l + g).

Per-mille polarization control is not easy !
Control optical birefringence of all optical elements
* Mechanical stress, Temperature, Rouhgness defects, Thickness defects
Internal reflections and interferences in waveplates
Detailed model used succesfully at HERA
What about laser-induced thermal effects at tens of Watts ?
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Ongoing developments at Orsa

IP

D

. HBS
PD
° Typical scheme

CCD
= Telescope
=3

Wollaston

PD
o balanced PDs

Box with rough temperature control

Avoid DC measurements by investigating a lock-in detection:
* ~50kHz elasto-optic modulators
* Balanced, lock-in, photo-detection

Jacquet HDR (2009), Baudrand PhD thesis (2007)

Slowly starting activity

*  SuperKEKB upgrade

*  French ANR proposal submitted
ILC-dedicated studies needed?

- Manpower + hardware needs

Poirson et al. Applied Optics 34 6806 (1995), Brisson JINST 5 PO6006 (2010), Zomer HDR (2003),
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Conclusion

A lot of work made by DESY group (J. List) on nearly all aspects related to polarimetry
e Extraction with e+e- data
* Compton polarimeter design and integration
* Very detailed simulations
* Detectors, including very low systematics validated

Few points to complement maybe ?
* Laser systems re-design in view of modern technologies and actual location
* Laser polarization control and monitoring (model update, experimental setup validation)
* Downstream polarimeter may benefit from a design review (once ILC gets build)
e Overall review and update of implementation ?

Exploit ‘'synergies’ with other projects
* LUXE project at DESY
e SuperKEKB upgrade proposal (contribution by IJCLab)
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