Exploring Right Handed Neutrinos at ILC

Jurina Nakajima, Daniel Jeans^A, Arindam Das^B, Keisuke Fujii^A

SOKENDAI, KEK^A, Hokkaido Univ.^B

Motivation and Introduction

The right handed neutrino(RHN) can address the following big questions

- Why does matter dominate anti-matter in our universe?
- ▷ Why is neutrino mass so small?
- Do quarks and leptons unify?

Right handed neutrino is assumed to be a Majorana particle.($\nu = \bar{\nu}$)

2

JPS2021 15pT1-4

Model

jurina@post.kek.jp

"Exploring Right Handed Neutrinos at ILC"

3

Analysis tool

Fast simulation

Using Delphes with the "generic ILC detector card" recently prepared for the US Snowmass study

Full simulation

Calculating all values in detectors (Full geant4 simulation of ILD)

We prepared fast and full simulation signal samples.

jurina@post.kek.jp

"Exploring Right Handed Neutrinos at ILC"

Benchmark points

Not excluded by LHC

M _N [GeV]	Mz [,] [TeV]	gl'	V _{eN} ²	σιr (ee→NN) [fb]	Event # [4000fb ⁻¹]
100	7	1	0.001	7.08E-01	1261
200	7]	0.005	1.63E-01	131

▶ minimal U(1)_{B-L} model · Pol(e⁻, e⁺) = (-0.8, +0.3), (+0.8, -0.3): $\mathcal{L} = 1600 \, [\mathrm{fb}^{-1}]$

 $\bigstar \sigma_{LR} = \sigma_{RL}$

ILC 500 with initial state radiation(ISR) and beamstrahlung(BS)

• Pol(e⁻, e⁺) = (-0.8, -0.3), (+0.8, +0.3): $\mathcal{L} = 400 \, [\mathrm{fb}^{-1}]$

 $\begin{array}{l} M_N: RHN \mbox{ mass} \\ M_{Z'}: Z' \mbox{ mass} \\ g1': U(1)_{B-L} \mbox{ coupling constant} \\ V_{eN}: \mbox{ mixing angle} \end{array}$

jurina@post.kek.jp

"Exploring Right Handed Neutrinos at ILC"

Backgrounds

However... We need to consider

Choosing the wrong particle as an electron

Add to <u>full</u> simulation background samples.

eexyyx, xxxxee, yyyyee

x...up type fermiony...down type fermion

Cross section — Background

xup type fermion
ydown type fermion

			ydo
(100%,100%)	eexyyx [fb]	xxxxee [fb]	yyyyee [fb]
eLpR	16.4	0.0871	0.145
eRpL	3.64	0.0462	0.0531
eLpL	6.63	0.0338	0.022
eRpR	6.61	0.033	0.0197

"eexyyx" process is dominant

Electron Charge

- ILC 500 with ISR / BS
- Pol(e⁻, e⁺) = (-0.8, +0.3)
- Isolated e # = 2 && Isolated $\gamma \# = 0$

e⁺

We use only same sign samples Charge == 1

"Exploring Right Handed Neutrinos at ILC"

8

Ν

Distribution of Isolated electron energy

- · ILC 500 with ISR / BS
- $Pol(e^{-}, e^{+}) = (-0.8, +0.3)$

- Isolated e # = 2 && Isolated $\gamma \# = 0$
- Isolated e is same sign($e_1 \times e_2 = 1$)

"Exploring Right Handed Neutrinos at ILC"

Distribution of COS_{disoe}

ILC 500 with ISR / BS Isolated e # = 2 && Isolated $\gamma \# = 0$ Isolated e is same sign($e_1 \times e_2 = 1$) $Pol(e^{-}, e^{+}) = (-0.8, +0.3)$ E_{iso} < 200 [GeV] $\cos\theta_{isoe}$ (full signal + full backgrounds) Vomalized BG_eexyyx ---- M_N=100 GeV BG_xxxee — M_N=200 GeV 10 10^{-1} 10⁻² -0.8 -0.6 -0.4 -0.2 0.2 0.8 0.4 0 0.6 -1 cos θ_{isoe} -0.95< cosθ_{isoe} < 0.95

"Exploring Right Handed Neutrinos at ILC"

Distribution of IsolatedLepTagging

"Exploring Right Handed Neutrinos at ILC"

Cut flow (eLpR)

	Signal Entries		Background Entries			Total background
	M _N =100	M _N =200	еехуух	xxxxee	ууууее	
No cut	1109	286	23472	118	207	23797
e _{iso} # = 2	837	252	14697	75	146	14918
$e_{iso\gamma} \# = 0$	701	158	9348	50	97	9495
Same sign (e _{iso1} ×e _{iso2} = 1)	355	79	80	0.47	0.55	81.02
E _{iso} < 200 [GeV]	355	79	78	0.47	0.55	79.02
-0.95< cosθ _{isoe} < 0.95	315	72	26	0.23	0.27	26.50
IsolatedLepTagging _{min} > 0.9	186	62	3.76	0.001	0.005	3.77

"Exploring Right Handed Neutrinos at ILC"

Cut flow (eRpL)

	Signal Entries		Back ground Entries			Total background
	M _N =100	M _N =200	еехуух	xxxxee	ууууее	
No cut	1116	287	7691	68	91	7850
e _{iso} # = 2	841	252	3769	40	60	3869
$e_{iso\gamma} \# = 0$	697	162	2406	26	41	2473
Same sign (e _{iso1} ×e _{iso2} = 1)	345	82	29	0.34	0.34	29.68
E _{iso} < 200 [GeV]	345	82	28	0.33	0.34	28.67
-0.95< cosθ _{isoe} < 0.95	318	74	6.57	0.12	0.17	6.86
IsolatedLepTagging _{min} > 0.9	189	64	0.96	0.02	0.01	0.99

Reconstruction methods

After removing isolated e, μ, γ force into 4 jets (Durham) e er Search for the correct combination of jj and jje Best jet pair 1 + iso $e \rightarrow M_{ije1}$ Jet pair 1 $\rightarrow M_{ii1}$, Jet pair 2 $\rightarrow M_{ii2}$ Best jet pair 2 + iso $e \rightarrow M_{iie2}$ $F = (M_{ii1} - M_w)^2 + (M_{ii2} - M_w)^2$ We expect for " $M_{ije1} = M_{ije2}$ " $F = (M_{jje1} - M_{jje2})^2$

Choose combination with minimum F

jurina@post.kek.jp

"Exploring Right Handed Neutrinos at ILC"

Results – Reconstructed W

Results – Reconstructed RHN

- ILC 500 with ISR / BS
- $Pol(e^{-}, e^{+}) = (-0.8, +0.3)$
- Isolated e # = 2 && Isolated $\gamma \# = 0$
- Isolated e is same sign($e_1 \times e_2 = 1$)
- E_{iso} < 200 [GeV]
- $-0.95 < \cos\theta_{isoe} < 0.95$
- IsolatedLepTagging_{min} > 0.9

Summary

- We analyze "RHN pair production" by full simulation and fast simulation
- There are small difference between fast simulation and full simulation
- ▶ Background events are a few for 1600 [fb⁻¹] of ILC500
 - → "RHN pair production" is almost background free

Next step

- There are small difference between fast simulation and full simulation
 - → What is the cause? -> overlay events ...? etc..?

I want to deepen my understanding.

Current limits - Z' mass

SM like Z' coupling

ල් ස 10 ATLAS Simulation --- Expected limit **ILC250** 0.100 √s = 14 TeV, 3000 fb⁻¹ Expected ± 1σ Expected $\pm 2\sigma$ Z' → ee 0.010 10⁻² —Ζ'_{33M} $<\mu> = 200$ $\sigma(e^+e^- \rightarrow N^i N^i)$ [fb] 10⁻³ 0.001 10-4 10-4 minimal B-L model MN_{1,2,3} = 50 GeV 10-5 10⁻⁵ MN_{1,2,3} = 100 GeV Alternative B-L model 10-6 10⁻⁶ $MN_{1,2} = 50 \text{ GeV}$ $MN_{1,2} = 100 \text{ GeV}$ 10-7 10⁻⁷L 2.5 5 6 3.56.5 7 7.55.5M_z [TeV] m_{Z'}[TeV] ATLAS-TDR-LHCC2017-2018 arXiV[1812.11931]

The heavier Z' mass less constrained by LHC

jurina@post.kek.jp

"Exploring Right Handed Neutrinos at ILC"

JPS2021 15pT1-4

20

HL-LHC prospects limit for U(1)_{B-L} model

Current limits IV_{eN}I²

IV_{eN}I² : the "light-heavy" neutrino mixing matrix

<u>CMS PAS EXO-19-019</u>

"Exploring Right Handed Neutrinos at ILC"

Current Limits and prospects - Z' mass,g1'

G1':U(1)_{B-L} gauge coupling constant

"Exploring Right Handed Neutrinos at ILC"

JPS2021 15pT1-4

Isolated e,y,µ (full signal + full background)

Number of isolated e

Electron Charge

ILC 500 with ISR / BS # isolated electrons =2 && # isolated photons = 0

JPS2021 15pT1-4

24

We use only same sign samples (Charge == 1

Results – Reconstructed W

- ILC 500 with ISR / BS
- (<u>full</u> signal + <u>full</u> backgrounds)

- Isolated e # = 2
- Isolated e is same sign($e_1 \times e_2 = 1$)

JPS2021 15pT1-4

- E_{iso} < 200 [GeV]
- $-0.95 < \cos\theta_{isoe} < 0.95$
- IsolatedLepTagging_{min} > 0.9

Results – Reconstructed RHN

ILC 500 with ISR / BS

(full signal + full backgrounds)

- Isolated e # = 2
- Isolated e is same sign($e_1 \times e_2 = 1$)
- E_{iso} < 200 [GeV]
- $-0.95 < \cos \theta_{isoe} < 0.95$
- IsolatedLepTagging_{min} > 0.9

