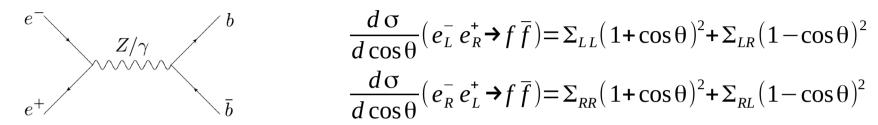
Heavy Quark cross section and forward backward asymmetries at ILC250 (and beyond)

Adrián Irles* on behalf of the <u>Orsay/Tohoku/Valencia HQ-ILC team</u>
*AITANA group at IFIC - CSIC/UV

Introduction

- ► Orsay/Tohoku/Valencia Heavy Quark ILC research team
 - From top to strange (so far...)
- ► Today:
 - Report on ccbar at ILC250 (with some bbbar) A.I.
 - Report on ssbar at ILC250 Yuichi Okugawa
 - Both reports are based on mc2020 samples

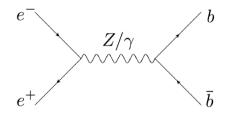


Motivation

Two fermion processes

Differential cross section for (relativistic) di-fermion production

$$\frac{d\sigma}{d\cos\theta}(e_L^-e_R^+ \rightarrow f\bar{f}) = \Sigma_{LL}(1 + \cos\theta)^2 + \Sigma_{LR}(1 - \cos\theta)^2$$


$$\frac{d\sigma}{d\cos\theta}(e_R^-e_L^+ \to f\,\overline{f}) = \Sigma_{RR}(1+\cos\theta)^2 + \Sigma_{RL}(1-\cos\theta)^2$$

- The helicity amplitudes Σ_{11} , contain the couplings g_1/g_2 (or Form factors or EFT factors)
- Left≠right (characteristic for each fermion)
- Only beam polarisation allows inspection of the 4 helicity amplitudes for all fermions
 - Beam polarisation also enhances the cross section values

Observables

▶ Quark (fermion) **electroweak couplings** can be **inferred from cross section, Rq** and forward backward asymmetry **AFB** observables.

$$R_{q}^{0} = \Gamma_{q\bar{q}} / \Gamma_{had}(Z - pole) \longrightarrow R_{q}^{cont.} = \sigma_{q\bar{q}} / \sigma_{had}(s > Z - pole)$$

Quark identification. No need tomeasure an angular distribution (but possible)

$$\frac{d \sigma}{d \cos \theta}$$

$$A_{FB} = \frac{N_F - N_B}{N_F + N_B}$$

Angular Distribution.

Quark ID + charge measurement (quark – antiquark disentangling)

Gives access to all left/right couplings.

Normalized quantities are highly preferred: to control (remove) systematic uncertainties

Measuring Rq

► Event selection → backgrounds from radiative return (x10 signal) events and WW/ZZ/HZ

Signal

Rad return bkg

Polarization	$\sigma_{e^-e^+ \to q\bar{q}}(E_{\gamma} < 35 GeV)$ [fb]			$\sigma_{e^-e^+ \to q\overline{q}}(E_{\gamma} > 35 GeV)$ [fb]		
	$b\overline{b}$	$c\overline{c}$	$q\overline{q} (q = uds)$	$b\overline{b}$	$c\overline{c}$	$q\overline{q} (q = uds)$
$e_L^-e_R^+$	5677.2	8518.1	18407.3	20531.4	18363.8	57651.3
$e_R^-e_L^+$	1283.2	3565.0	5643.5	12790.8	11810.8	36179.5

Diboson bkg

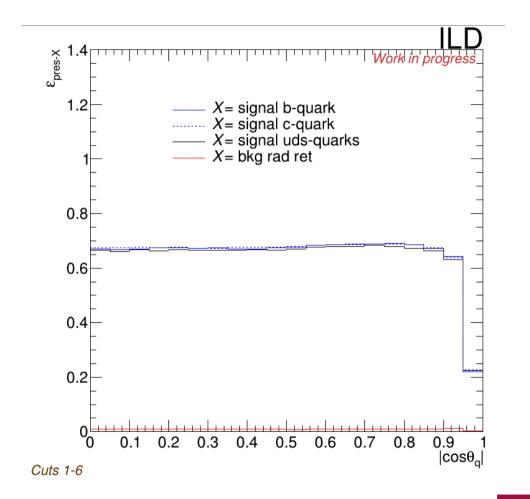
Channel	$\sigma_{e_L^-e_R^+ o X}$ [fb]	$\sigma_{e_R^-e_L^+ o X}$ [fb]
$X = WW \rightarrow q_1\bar{q_2}q_3\bar{q_4}$	14874.4	136.4
$X = ZZ \rightarrow a_1 \bar{a_1} a_2 \bar{a_2}$	1402.1	605.0
$X = HZ \rightarrow q_1q_2H$	346.0	222.0

- ► Event selection → backgrounds from radiative return (x10 signal) events and WW/ZZ/HZ
- Cuts (see J. Márquez talk https://agenda.linearcollider.org/event/9285/)
 - C1-2: Energy_photon < 35 GeV & 2jet inv_mass > 140GeV
 (Cuts for events with ISR escaping the reconstruction)
 - C3-5: photon removal cuts (veto events with reconstructed ISR photons)
 - **C6:** y23 < 0.015 (cut against dibosons)

CUT	1
CUT	2
CUT	3
CUT	4
CUT	5
CUT	6
	CUT CUT CUT CUT CUT

Signal I	Efficiend	cy (%)	B/S (%)			
bb	CC	qq (uds)	RadRet	WW	ZZ	qqH
100.0	100.0	100.0	287.0	44.9	4.3	1.0
81.1	80.9	81.0	20.3	6.2	0.6	0.2
80.8	80.9	81.0	18.6	5.8	0.6	0.2
80.8	80.5	80.0	10.4	5.8	0.6	0.2
80.8	80.5	79.9	10.3	5.8	0.6	0.2
77.7	77.2	75.9	4.8	6.0	0.6	0.2
64.0	64.1	63.3	3.8	1.5	0.2	0.1

	CUT 1
	CUT 2
bL	CUT 3
e F	CUT 4
	CUT 5
	CUT 6


Signai i	Emciend	3y (%)		B12 (%)	
bb	CC	qq (uds)	RadRet	WW	ZZ	qqH
100.0	100.0	100.0	562.0	1.3	5.7	2.1
81.0	81.0	81.2	41.4	0.2	0.9	0.3
80.8	80.9	81.2	38.0	0.2	0.8	0.3
80.7	80.6	80.2	17.6	0.2	0.8	0.3
80.7	80.6	80.1	17.4	0.2	0.8	0.3
77.5	77.2	76.2	6.9	0.2	0.8	0.3
64.0	64.1	63.6	5.8	0.0	0.3	0.1

DIC (0/1)

Cianal Efficiency (0/4)

- ► Event selection → backgrounds from radiative return (x10 signal) events and WW/ZZ/HZ
- Cuts (see J. Márquez talk https://agenda.linearcollider.org/event/9285/)
 - C1-2: Energy_photon < 35 GeV & 2jet inv_mass > 140GeV
 (Cuts for events with ISR escaping the reconstruction)
 - C3-5: photon removal cuts (veto events with reconstructed ISR photons)
 - **C6:** y23 < 0.015 (cut against dibosons)

- Method used to remove modeling dependence on the efficiency of b-tagging → aiming to the per mil precision
- The sample consisted on events made of two hadronic jets (qqbar)
 - The LEP/SLC preselection consisted on a "simple" veto of Z→ leptons events
- ▶ The method is based on the comparison of **single vs double tagged samples**

$$\begin{split} N_0 = N_{presel} = & \left[\left. \varepsilon_{pres-signal} \, \sigma_{q\bar{q}} + \varepsilon_{pres-bkg} \, \sigma_{bkg} \right] \cdot Lum \\ N_{1tag,c} = & \left[\left. \varepsilon_{pres-signal} \left(\varepsilon_c \, \sigma_{c\bar{c}} + \varepsilon_b \, \sigma_{b\bar{b}} + \varepsilon_q \, \sigma_{q\bar{q}} \right) + \varepsilon_c \, \varepsilon_{bkg} \, \sigma_{bkg} \right] \cdot Lum \\ N_{2tag,c} = & \left[\left. \varepsilon_{pres-signal} \left(\varepsilon_c^2 \left(1 + \rho_c \right) \sigma_{c\bar{c}} + \varepsilon_b^2 \, \sigma_{b\bar{b}} + \varepsilon_q^2 \, \sigma_{q\bar{q}} \right) + \varepsilon_c^2 \, \varepsilon_{bkg} \, \sigma_{bkq} \right] \cdot Lum \end{split}$$

- Method used to remove modeling dependence on the efficiency of b-tagging → aiming to the per mil precision
- The sample consisted on events made of two hadronic jets (qqbar)
 - The LEP/SLC preselection consisted on a "simple" veto of Z→ leptons events
- ▶ The method is based on the comparison of single vs double tagged samples

$$\begin{split} N_{0}^{\mathit{signal}} = N_{\mathit{presel}} = & \left[\varepsilon_{\mathit{pres-signal}} \sigma_{q\bar{q}} \right] \cdot \mathit{Lum} \\ N_{1\mathit{tag},c}^{\mathit{signal}} = & \left[\varepsilon_{\mathit{pres-signal}} \left(\varepsilon_{c} \, \sigma_{c\bar{c}} + \varepsilon_{b} \, \sigma_{b\bar{b}} + \varepsilon_{q} \, \sigma_{q\bar{q}} \right) \right] \cdot \mathit{Lum} \\ N_{2\mathit{tag},c}^{\mathit{signal}} = & \left[\varepsilon_{\mathit{pres-signal}} \left(\varepsilon_{c}^{2} \left(1 + \rho_{c} \right) \sigma_{c\bar{c}} + \varepsilon_{b}^{2} \, \sigma_{b\bar{b}} + \varepsilon_{q}^{2} \, \sigma_{q\bar{q}} \right) \right] \cdot \mathit{Lum} \end{split}$$

- ▶ For the moment, let's assume that we know the bkg contribution with perfect accuracy
 - We remove the bkg contribution from the equations

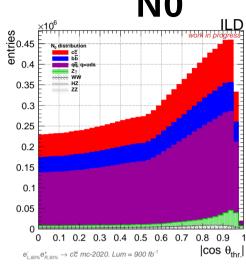
Assuming that:

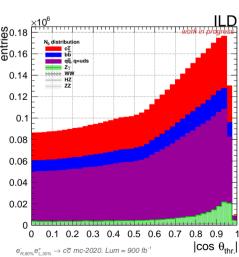
- Minimal contribution from the brackgrounds
- the preselection efficiency is the same for all flavours

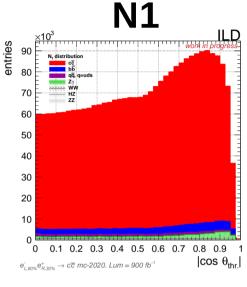
$$\begin{split} f_{1tag} &= \varepsilon_c R_c + \varepsilon_b R_b + \varepsilon_{uds} (1 - R_b - R_c) \\ f_{2tag} &= \varepsilon_c^2 (1 + \rho^2) R_c + \varepsilon_b^2 R_b + \varepsilon_{uds}^2 (1 - R_b - R_c) \end{split}$$

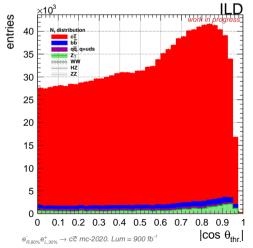
▶ We are interested in Rc / epsilon_c

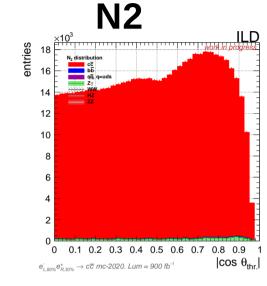
- fl, f2 are our observables (dependent on N0, N1, N2)
- Rho, Rb and the mistagging efficiencies are assumptions (MC, measurement,...)

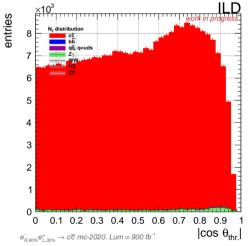

$$\begin{aligned} &f_{1tag}\!\simeq\!\varepsilon_{c}\,R_{c}\\ &f_{2tag}\!\simeq\!\varepsilon_{c}^{2}R_{c}\\ &with\\ &BKG\!\simeq\!0\\ &\varepsilon_{b}^{pres}\!\simeq\!\varepsilon_{c}^{pres}\!\simeq\!\varepsilon_{uds}^{pres} \end{aligned}$$

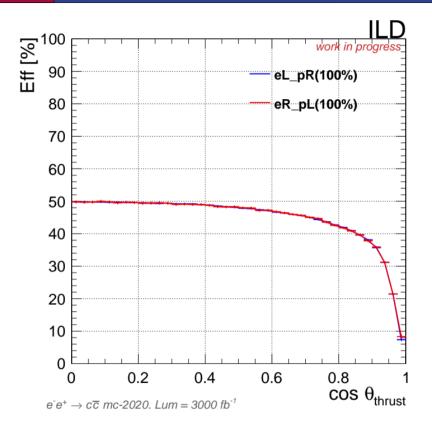


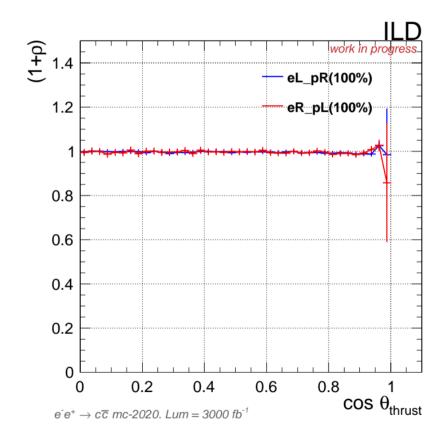


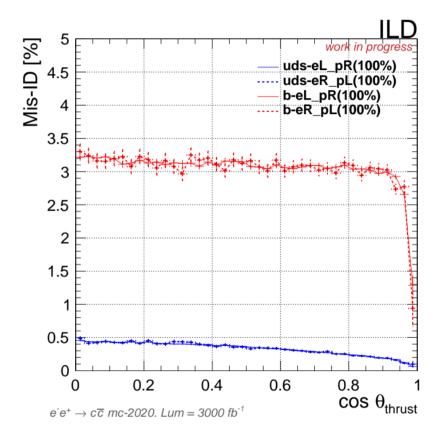



eRpL (80,30)

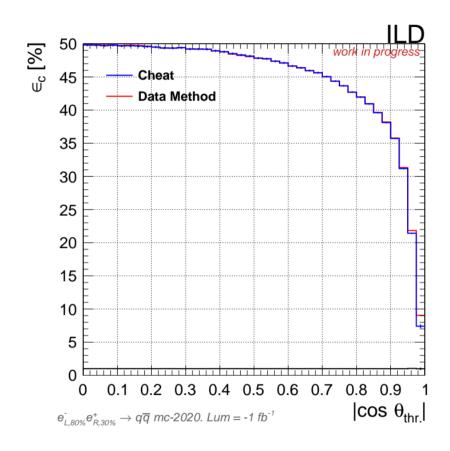


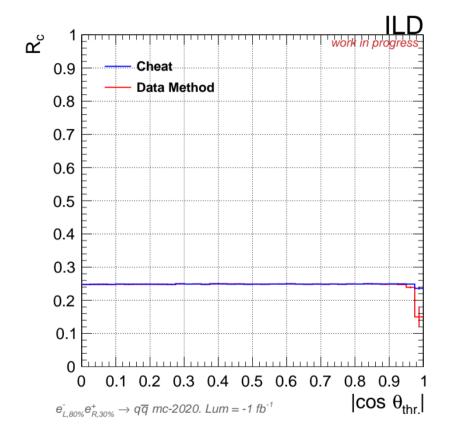






- ► The efficiency of quark tagging can be measured with the single vs double tagging, with some assumptions
 - We perfectly know the bkgs
 - We perfectly know the miss-tagging efficiencies (measurement? MC?)
 - We perfectly know the correlation factor (only via MC)
 - We have measured Rb
- ➤ Fortunately, we expect that all these quantities are small at ILC and well understood
 - Minimal impact either case.
 - Controlled systematic uncertainties





Results (eLpR 80,30)

Results (eLpR 80,30)

- Rc=0.248915. I quote all the estimated relative uncertainties.
- ► Statistical uncertainties (2000 fb-1 of shared luminosity)
 - Only stats: Delta → 0.13%
- ► Preselection uncertainties
 - The preselection is MC dependent.... Assume 10% level accuracy
 - The flavour selection gives differences of ~1% between flavours. We take this as a total uncertainty.
 - Delta → 0.1%
- ▶ Can we know the mistagging efficiencies at the 10% level
 - LEP estimated with at similar accuracy hep-ex/0503005
 - If yes → **Delta ~ 0.05%**
 - Using or not the MC prediction of rho gives us: Delta → 0.06%
- ► Can we know the **backgrounds** at the 10% accuracy?
 - If yes → Delta ~ 0.08%
- ► What about **polarization**?
 - Using the estimates from 10.3204/PUBDB-2019-03013 we estimate: Delta → 0.003%
- ► Assuming 1% precision in Rb: Delta → 0.04%

Results (c & b)

$$R_c(e_L p_R, 80,30) = 0.2489(SM - LO) \pm 0.14\%(stat) \pm 0.16\%(syst.)$$

 $R_c(e_R p_L, 80,30) = 0.3144(SM - LO) \pm 0.20\%(stat) \pm 0.17\%(syst.)$

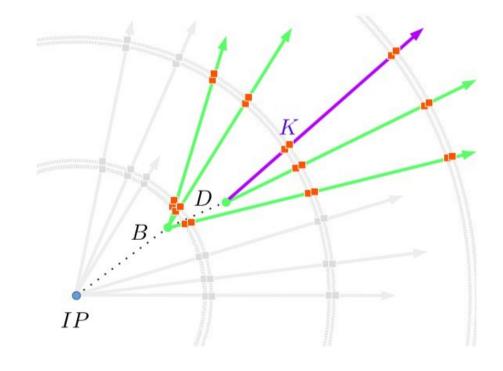
C-quark case: systematics are dominated by the flavour selection estimations

$$R_b(e_L p_R, 80,30) = 0.1694(SM - LO) \pm 0.12\%(stat) \pm 0.15\%(syst.)$$

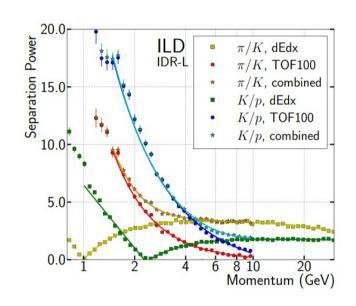
 $R_b(e_R p_L, 80,30) = 0.1251(SM - LO) \pm 0.22\%(stat) \pm 0.17\%(syst.)$

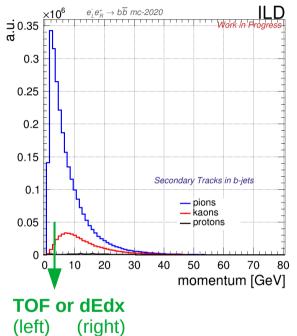
B-quark case: systematics are dominated by the background estimation (assumed to be know only at 10% level)

Conservative estimation of the systematic unc. in both cases


Measuring AFB

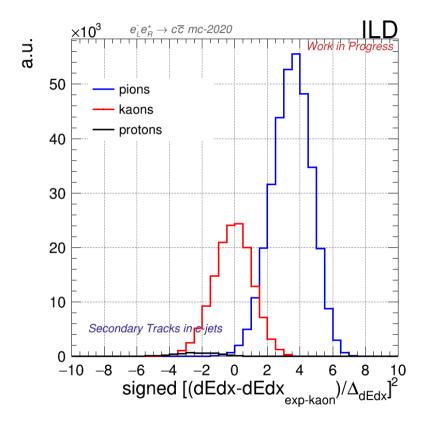
AFB measurement: basis


- ▶ We are required to measure the jet charge
 - Using K-ID and/or full Vtx charge measurement
 - K-ID is better suited for the C-quark (Vtx is better suited for b-quark)
- Ideally we would use the double charge measurements
 - To control / reduce the systematic uncertainties


► Today I focus only on the K-method



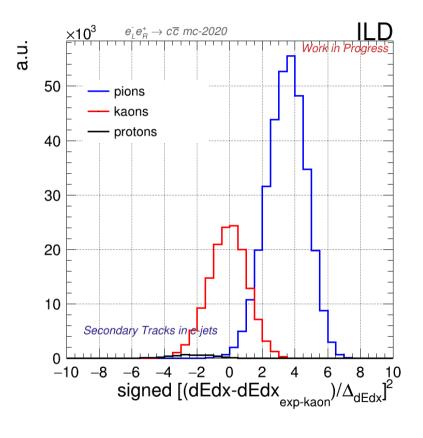
High Level Reco Challenges: Particle ID



- (left) (right)► For AFB measurements we are required to measure the jet-charge
- ► Therefore we are interested in a high power of K/pion separation
- ▶ Possible solutions: using dEdx and/or TOF
- Yellow points

Kaon identification for the ccbar case

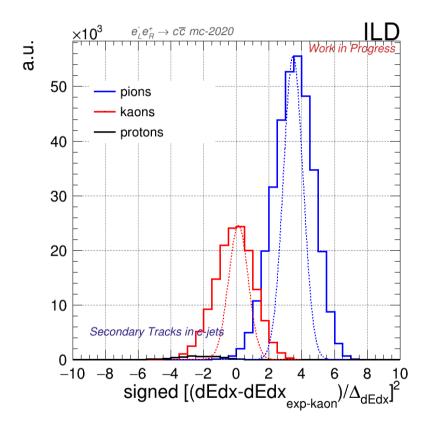
Using dEdx separation power:


signed [(dEdx-dEdx_{exp-kaon})/
$$\Delta$$
_{dEdx}]²

- $dEdx_{exp-kaon}$ = theoretical curve (B.Bloch)
- Delta dEdX = experimental uncertainty
- Zero worries about protons

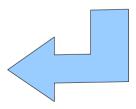
Kaon identification for the ccbar case

Using dEdx separation power:


signed
$$[(dEdx-dEdx_{exp-kaon})/\Delta_{dEdx}]^2$$

- \bullet dEdx_{exp-kaon} = theoretical curve (B.Bloch)
- Delta dEdX = experimental uncertainty
- Zero worries about protons
- ➤ Could we imagine a factor 2 improvement in the power separation ? (i.e. cluster counting)

Kaon identification for the ccbar case



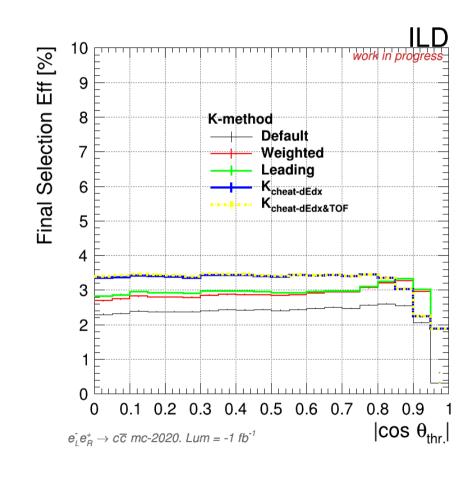
Using dEdx separation power:

signed
$$[(dEdx-dEdx_{exp-kaon})/\Delta_{dEdx}]^2$$

- $dEdx_{exp-kaon} = theoretical curve (B.Bloch)$
- Delta dEdX = experimental uncertainty
- Zero worries about protons
- ➤ Could we imagine a factor 2 improvement in the power separation ? (i.e. cluster counting)
 - Then the kaon ID performance will be almost perfect

AFB measurement

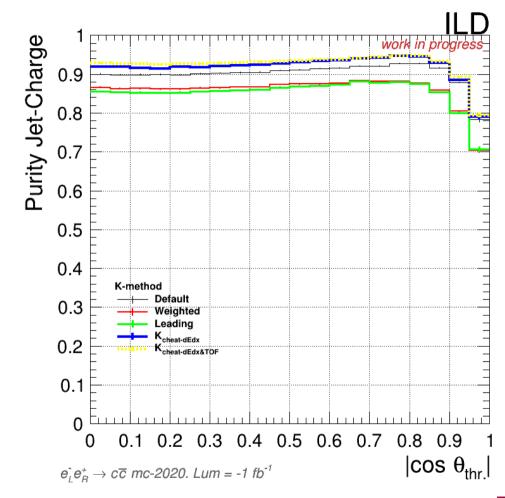
- ► For the K-method we study three variations
 - Default: we sum up the charge of all identified kaons
 - Weighted: we perform a weighted sum of all identified kaons (using the momentum)
 - Leading: we only use the leading K


AFB measurement

▶ Final Selection Efficiency:

- Fraction of ccbar events after the full reconstruction including double charge measurement (only using Kmethod)
- ▶ To improve the selection efficiency we would require:
 - a) use single charge measurements (larger migrations)
 - b) improving the dEdx performance and the charge measurement (leading kaon method kaon)

- ▶ With ~3% efficiency we expect statistical uncertainties of
 - eLpR (80%,30) → ~0.5%
 - eRpL (80%,30) → ~0.8%
 - 200fb-1 of shared luminosity
 - only using Kaons...

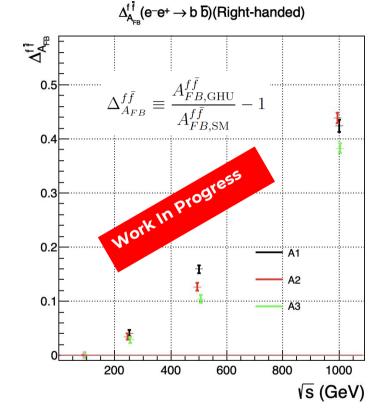


AFB measurement

Purity of charge measurement:

- Probability of measuring the charge correctly
- estimated with data: using events with compatible or incompatible charge measurements
- ▶ Using the leading kaons shows a slight decrease in purity but still almost at 90%
- ➤ With "perfect" dEdx measurement we have purities larger than 90%

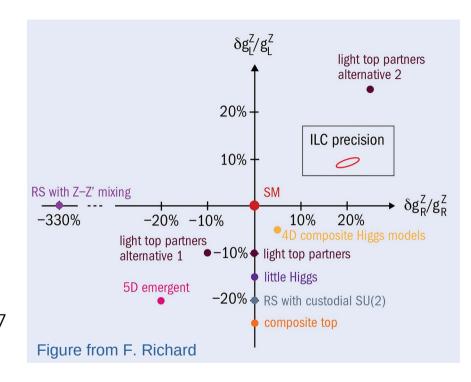
Next actions (short term)


- Estimate the AFB uncertainties using also the Vtx method
- ► And using the single charge measurements
 - In principle possible because the c-quark tagging is very efficient → almost background free
- ▶ Numbers ready for the ILCX2021?

Medium/long term actions

- ► The Orsay/Tohoku/Valencia HQ-ILC research team is running out of flavours!
- ➤ Strong motivations for looking at other energies
 - Many BSM predict large deviations that are enhanced at higher energies (GHU, ...)
 - Improving the Z-pole couplings knowledge at the Z-pole is also crucial to separate between models
- ► Medium (short) term
 - J. Márquez will present the studies snapshoted in the right plot (several flavours and energies)
 - We will perform a 500 GeV sample request
- ► Medium (long) term
 - Explore the Giga-Z scenario (A.I)
 - ILC500 studies by J. Marquez

Poster presented at INFIERI2021 school by <u>J. Márquez.</u> "realistic" statistical uncertainties (assuming ILC250 GeV performance at all the energies)



Motivation: BSM Z' resonances

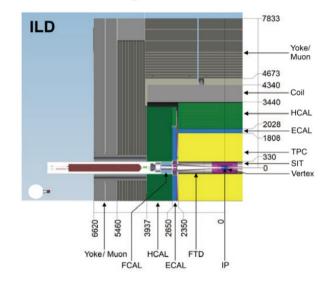
- ➤ Many **BSM scenarios** (i.e. Randal Sundrum, compositeness, Higgs unification models...) predict heavy resonances coupling to the (t,b) doublet and also lighter fermions (i.e. c/s quarks)
 - BSM resonances tend to couple to the right components.
 - Only coupling to (t,b) doublet
 - → Peskin, Yoon arxiv:1811.07877
 - → Djouadi et al arxiv:hep-ph/0610173
 - Coupling also to lighter fermions
 - → Hosotani et al arxiv:1705.05282 arxiv:2006.02157

Detector Technologies

Vertex: CMOS, DEPFET, FPCCD, ...

Tracker:

TPC (GEM, micromegas, pixel) + silicon pixels/strips


ECAL:

Silicon (5x5mm²) or Scintillator (5x45mm²) with Tungsten absorber

HCAL:

Scintillator tile (3x3 cm²) or Gas RPC (1x1 cm²) with Steel absorber

All inside solenoidal coil of 3-4 T

Detector R&D collaborations:

ILD Design Goals

Features of ILC:

low backgrounds, low radiation, low collision rate (5-10 Hz)

These allow us to pursue aggressive detector design:

Detector Requirements Physics

• Impact parameter resolution $\sigma(d_0) < 5 \oplus 10 / (p[GeV] \sin^{3/2}\theta) \mu m$

H→bb,cc,gg,ττ

• Transverse momentum resolution $\sigma(1/p_T) = 2 \times 10^{-5} \, \text{GeV}^{-1} \bigoplus 1 \times 10^{-3} \, / \, (p_T \, \text{sin}^{1/2} \theta)$

Total $e+e-\rightarrow$ ZH cross section

Jet energy resolution
 3-4% (around E_{iet} ~100 GeV)

H→invisible

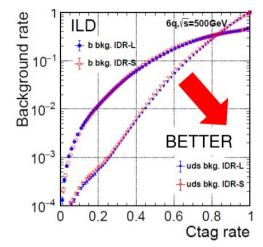
• Hermeticity $\theta_{min} = 5 \text{ mrad}$

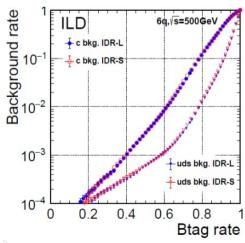
H→invisible; BSM

R. Ete: "The ILD Software Tools and Detector Performance"

Why this luxury?

Beam spot size




FCCee ILC | SLC LEP σ_x [nm] 13700 516 | 1500 200000 | σ_y [nm] 36 7.7 | 500 2500 | Source SLC, LEP, PDG

©R. Poeschl

Flavour tagging

Dedicated tools for vertexing and flavour tagging: LCFIPlus (for lepton colliders)

- A high-purity secondary vertex finder based on build-up vertex clustering,
- a jet clustering algorithm using vertex information
- and multivariate jet flavor tagging for the separation of b and c jet

Design goals

- Impact parameter resolution $\sigma(d_0) < 5 \oplus 10 / (p[GeV] \sin^{3/2}\theta) \mu m$
- Transverse momentum resolution $\sigma(1/p_T) = 2 \times 10^{-5} \text{ GeV}^{-1} \oplus 1 \times 10^{-3} / (p_T \sin^{1/2}\theta)$

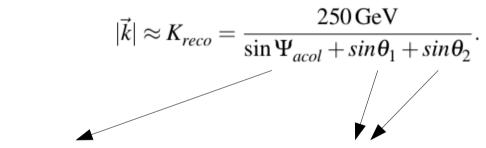
	<i>b</i> -quark		light quarks		
Experiment	Eff. [%]	Pur. [%]	Eff. [%]	Pur. [%]	
DELPHI [19]	47%	86%	51%	82%	
ILD (this note)	80%	98.7%	58%	96.1%	

Double charge measurements (b-quark)

- ► Mistakes in the charge calculation due to loss tracks (acceptance issues, mis reconstruction etc) have to be corrected and estimated using data \rightarrow Mistakes produce migrations (flip of the cos(θ))
- ► The **migrations are restored** by determining the purity of the charge calculation using double charge measurements
 - Accepted events, N_{acc}, with (-,+) compatible charges
 - Rejected events, N_{rei}, non compatible (-,++) charges

pq-equation Incognitas: pq and N.

$$N_{acc} = Np^{2} + Nq^{2}$$


$$N_{rej} = 2Npq$$

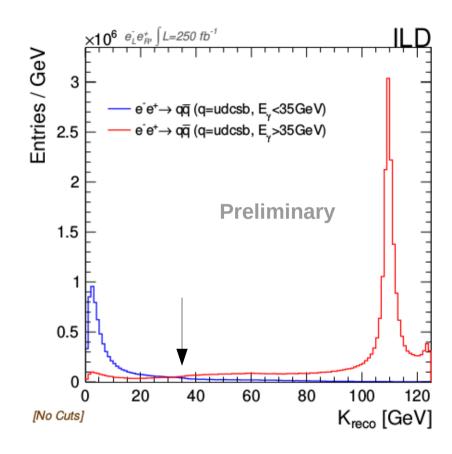
$$1 = p + q$$

The **pq-equation** allows for correcting for migrations (finding the correct N) and in particular for the last and ultimate migration (dilution) due to B0 oscillations

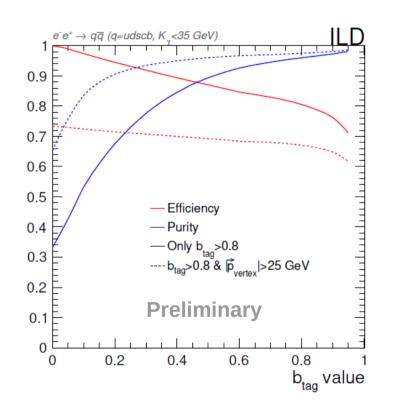
- ► Alternatives to m(2jets)?
- Estimator of the energy of the photon ISR using only the two reconstructed jets.
 - From momentum conservation (if the photon/s are emitted parallel to the beam pipe):

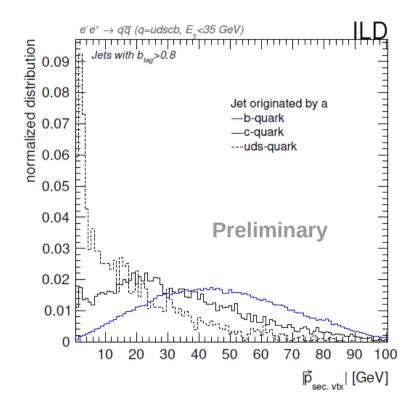
Two jet acolinearity

$$\sin \Psi_{acol} = \frac{\vec{p_{j_1}} \times \vec{p_{j_2}}}{|\vec{p_{j_1}}| \cdot |\vec{p_{j_1}}|}$$

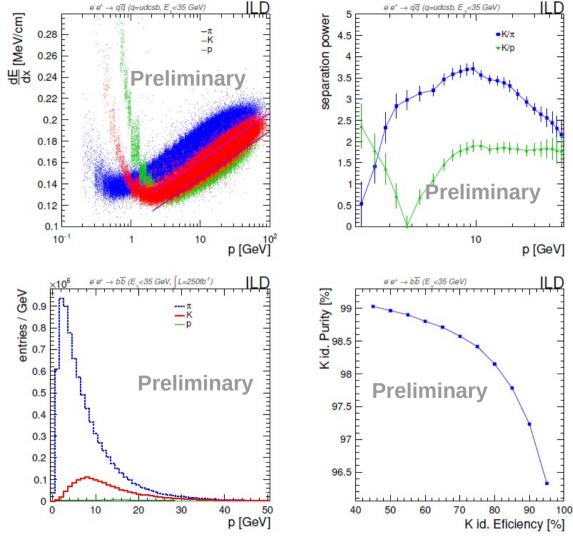

Jet angular variables (w.r.t. detector frame)

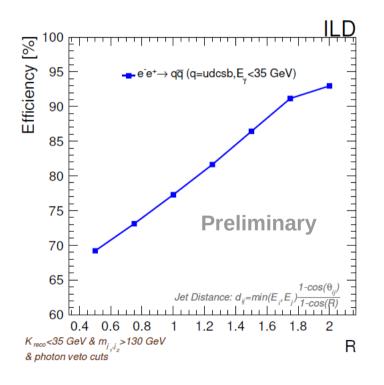
Preselection: Kreco

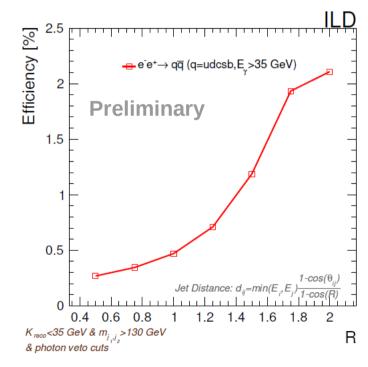



- Estimator of the energy of the photon ISR
- ► We apply a cut of Kreco<35 GeV

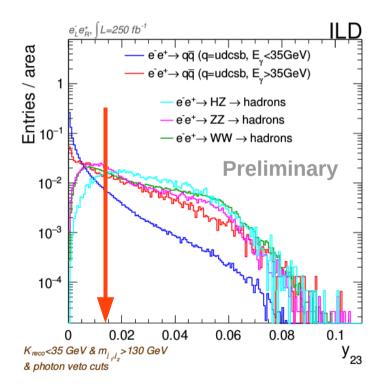
- ➤ Some signal events have larger Kreco (~15%)
 - Because of detector resolution and double photon ISR
- Some radiative return events have Kreco<35GeV (~7%)
 - Because the photon(s) has not escaped through the beam pipe
- ➤ Can we identify the photon clustered in one or both jets and veto these events?

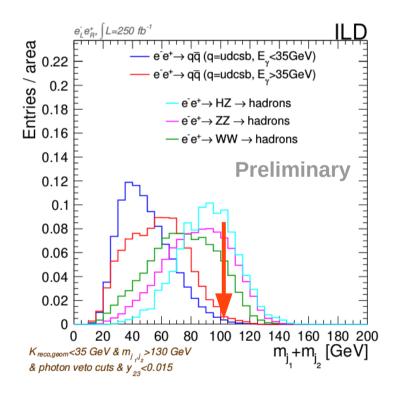






$$d_{ij} = min(E_i^{2p}, E_j^{2p}) \frac{1 - cos(\theta_{ij})}{1 - cos(R)}$$
$$d_{iB} = E_i^{2p}$$





Final steps of the preselection

- ► Cut on y23<0.015 (jet distance at which the 2 jet event would be clustered in 3 jets)
- Cut on mj1+mj2<100 GeV

