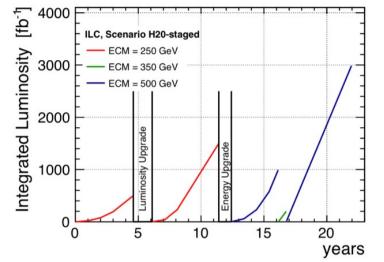
Flavor-Tagging of Quark Pairs at e+e- Higgs/Top Factories

Adrián Irles (AITANA group at IFIC – CSIC/UV) on behalf of:

the ILC International Development Team Physics and Detector Working Group the ILD concept group and the IJCLab/Tohoku/Valencia HQ-ILC team



ILC physics program

- All Standard Model particles within reach of planned linear colliders
- Machine settings can be "tailored" for specific processes
 - Centre-of-Mass energy
 - **Beams polarisation** (straightforward at linear colliders)
- Background free searches for BSM through beam polarisation

current ILC run plan: (basis of projections)

250 GeV: 2 ab-1, 500 GeV: 4ab-1, 350 GeV: 0.2 ab-1

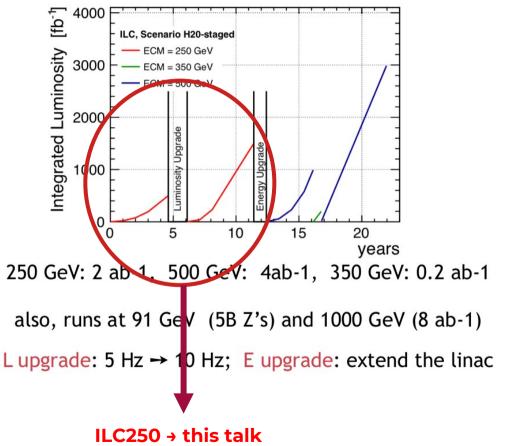
also, runs at 91 GeV (5B Z's) and 1000 GeV (8 ab-1)

Lupgrade: 5 Hz \rightarrow 10 Hz; Eupgrade: extend the linac

First phase at 250GeV

• A Higgs Factory and much more!

ILC physics program

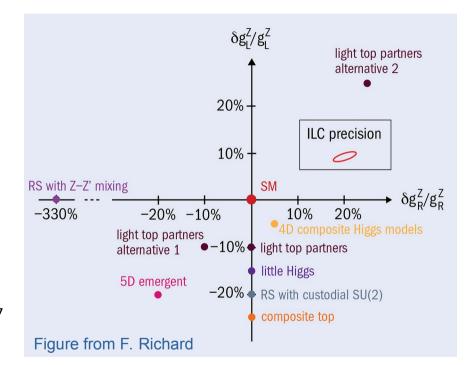


- All Standard Model particles within reach of planned linear colliders
- Machine settings can be "tailored" for specific processes
 - Centre-of-Mass energy
 - **Beams polarisation** (straightforward at linear colliders)
- Background free searches for BSM through beam polarisation

First phase at 250GeV

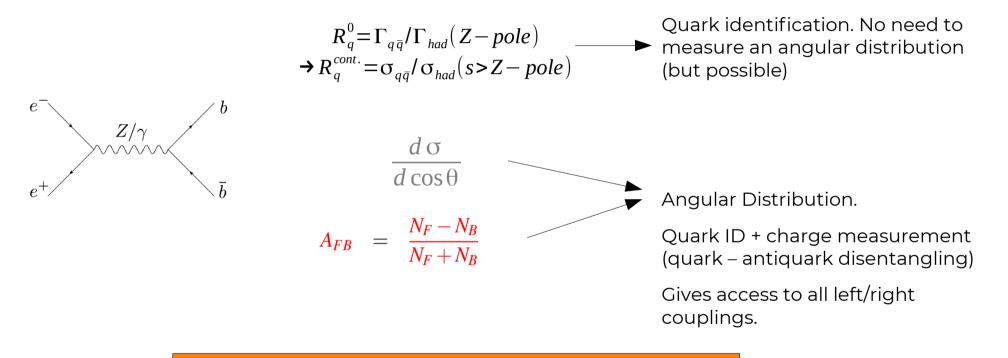
• A Higgs Factory and much more!

current ILC run plan: (basis of projections)



Motivation: BSM Z' resonances

- Many BSM scenarios (i.e. Randal Sundrum, compositeness, Higgs unification models...) predict heavy resonances coupling to the (t,b) doublet and also lighter fermions (i.e. c/s quarks)
 - BSM resonances tend to couple to the right components.
 - Only coupling to (t,b) doublet
 - → Peskin, Yoon arxiv:1811.07877
 → Djouadi et al arxiv:hep-ph/0610173
 - Coupling also to lighter fermions
 - → Hosotani et al arxiv:1705.05282 arxiv:2006.02157


Probe such scenarios require at least per mil level for experimental precision tt/bb/cc... (ss?) Can we do it? (this talk)

Observables

Quark (fermion) electroweak couplings can be inferred from cross section, Rq and forward backward asymmetry AFB observables.

Normalized quantities are highly preferred: to control (remove) systematic uncertainties

(few) Experimental challenges

Charge measurement

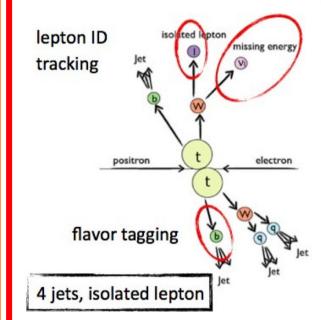
C-quark pairs

- Primary method: identification of Kaons produced D-meson decays → K-method (requires PID)
- Secondary method: reconstruction of charged mesons → Vtx-method

<u>PID is mandatory</u> to reach competitive ac curacies

s-quark pairs (in progress)

A. Irles, Higgs 2021

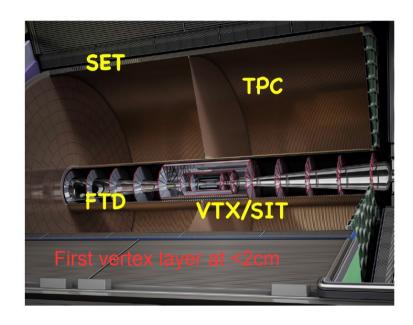

High efficient flavour tagging for b-quarks expected at future colliders

Charge Measurement

B-guark pairs

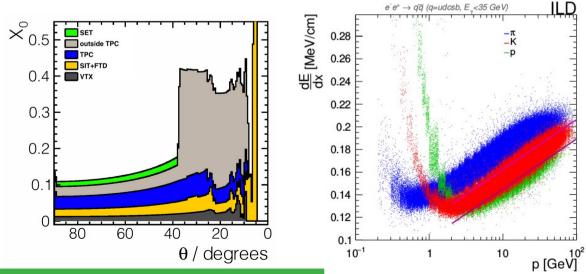
- Primary method: reconstruction of charged mesons
 → Vtx-method
- Secondary method: identification of Kaons produced in b-hadron decays → K-method (requires PID)

top-quark pairs... decay before hadronizing



ILD highlights

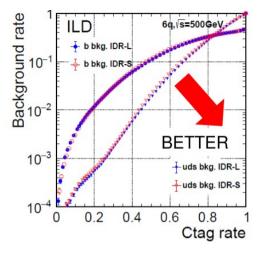
ILD


ILD snapshot

High angular **coverage** with **minimum** material budget and PID (TPC)

Linear Colliders offer tiny beam spots

- ▶ ILC experiments, as the **ILD**, will provide excellent:
 - Beam IP constraint
 - Tracking efficiency (>99%)
 - Secondary vertex separation and excellent flavour tagging
- Particle Flow optimized detector with high granularity calorimeters (>10⁸ cells!)



ILD: Interim Design Report arXiv:2003.01116

Flavour tagging

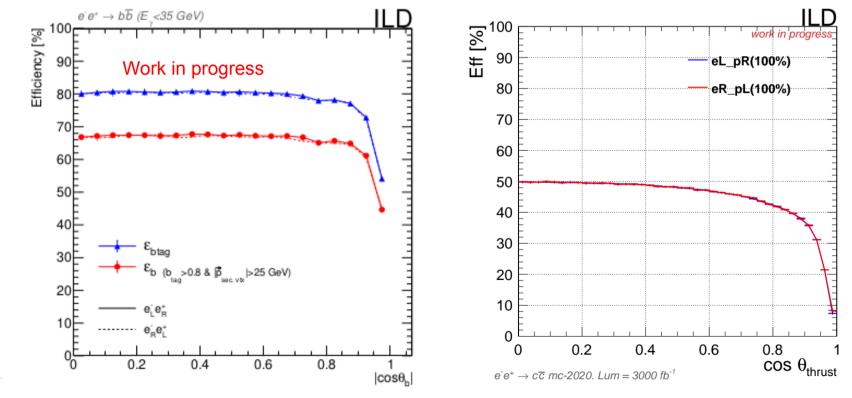
Dedicated tools for vertexing and flavour tagging: LCFIPlus (for lepton colliders)

- A high-purity secondary vertex finder based on build-up vertex clustering,
- a jet clustering algorithm using vertex information
- and multivariate jet flavor tagging for the separation of b -jetsand c jets

Design goals

- Impact parameter resolution $\sigma(d_0) < 5 \bigoplus 10 / (p[GeV] \sin^{3/2}\theta) \, \mu m$
- Transverse momentum resolution $\sigma(1/p_T) = 2 \times 10^{-5} \text{ GeV}^{-1} \bigoplus 1 \times 10^{-3} / (p_T \sin^{1/2}\theta)$

	<i>b</i> -quark		light quarks	
Experiment	Eff. [%]	Pur. [%]	Eff. [%]	Pur. [%]
DELPHI [19]	47%	86%	51%	82%
ILD (this note)	80%	98.7%	58%	96.1%

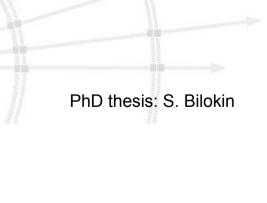

LCFIPIus: Nucl.Instrum.Meth.A 808 (2016) 109-116

Double Tag Method

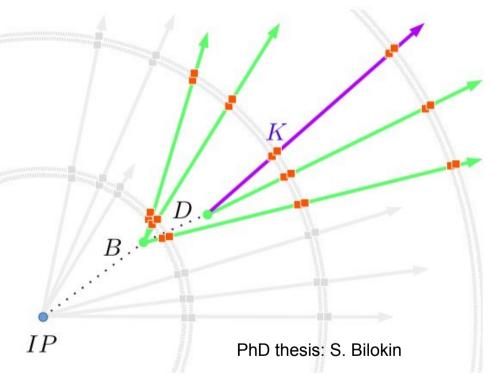
The efficiency of quark tagging can be measured with the single vs double tagging,

- We don't need to rely on MC which cannot provide per-mile level accuracy
- Other quark contamination bellow the 1% level (almost zero for uds)

X

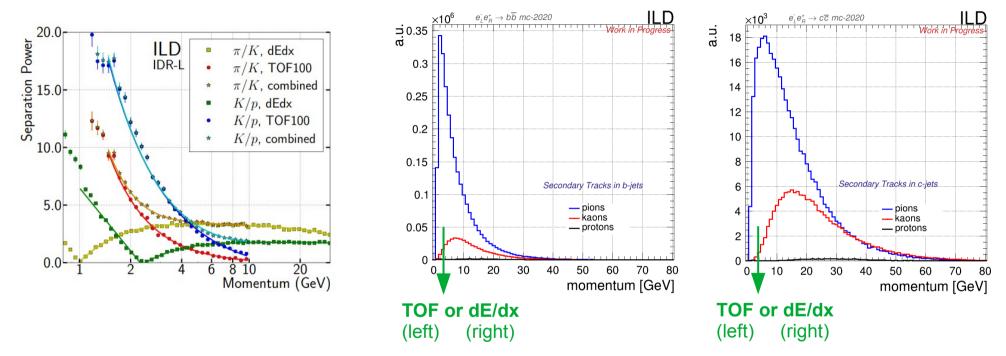

Charge measurement

Quark charge measurements

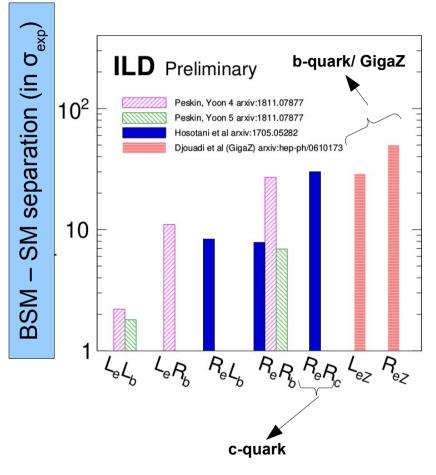

Important for top-quark studies but Indispensable for ee→ bb/cc/ss...

Methods

- Vtx charge and Kaon Identification
- High efficiency (double tagging)
- High purity \rightarrow control of the migrations
- Future detectors can base their entire measurements on double Tagging and vertex charge
 - LEP/SLC had to include single tags and semi-leptonic events
 - Critical for minimization of the systematics



High Level Reco Challenges: Particle ID



For AFB measurements we are required to measure the jet-charge

- Therefore we are interested in a high power of K/pion separation
- Possible solutions: using dE/dx and/or TOF

Many BSM predict deviations only for the right couplings.

BEAM POLARISATION is crucial

Per mil level experimental measurements required

Expected number of standard deviations for different **RS/compositeness BSM scenarios** when determining the different EW couplings to c- and b-quark at ILC250 (with GigaZ input).

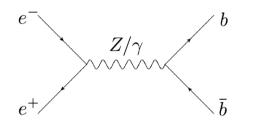
- Models that predict multi-TeV Z' resonances
- With or without mixing at Z-pole
- See backup for more details on the models

Potential for discovery of new resonances mZ' ~ O(10-20) TeV at ILC250

Arxiv:1709.04289, PoS(EPS-HEP2019)624 +GigaZ-ILC250 complementary arxiv:1905.00220

Summary

- ▶ ILC250 is a Higgs factory and much more: EW/Top/BSM(?) factory
 - Updgradability in energy
 - Polarised beams allowing detailed scrutiny of the quiral structure of the matter
- ▶ ILD is designed for precision physics with high capabilities in:
 - Particle Flow (not discussed here)
 - Flavour tagging
 - Particle Identification with dE/dx (for a broad range of energies)
- ▶ ILC/ILD have the potential to discover BSM physics with precision physics
 - qqbar final states asymmetries.



Back-up slides

Two fermion processes

Differential cross section for (relativistic) di-fermion production

$$\frac{d\sigma}{d\cos\theta} (e_L^- e_R^+ \rightarrow f\bar{f}) = \Sigma_{LL} (1 + \cos\theta)^2 + \Sigma_{LR} (1 - \cos\theta)^2$$
$$\frac{d\sigma}{d\cos\theta} (e_R^- e_L^+ \rightarrow f\bar{f}) = \Sigma_{RR} (1 + \cos\theta)^2 + \Sigma_{RL} (1 - \cos\theta)^2$$

- The helicity amplitudes Σ_{μ} , contain the couplings g_{μ}/g_{R} (or Form factors or EFT factors)
- Left≠right (characteristic for each fermion)

Only beam polarisation allows inspection of the 4 helicity amplitudes for all fermions

• Beam polarisation also enhances the cross section values

Two fermion processes

These processes have been deeply studied at LEP/SLC at the Z-pole

- Very comprehensive physics program at Z-Pole
- no access to the γ or Z/γ interference's ("cleaner" access to Z-couplings)
- Moderated quark tagging and/or charge measurements capabilities (or moderated statistics)
- Also moderated angular acceptance of the detectors

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH STANFORD LINEAR ACCELERATOR CENTER

> CERN-PH-EP/2005-041 SLAC-R-774 hep-ex/0509008 7 September 2005

Precision Electroweak Measurements on the Z Besonance

7 Feb 2006

arXiv:hep-ex/0509008v3

The ALEPH, DELPHI, L3, OPAL, SLD Collaborations,¹ the LEP Electroweak Working Group,² the SLD Electroweak and Heavy Flavour Groups

Accepted for publication in *Physics Reports*

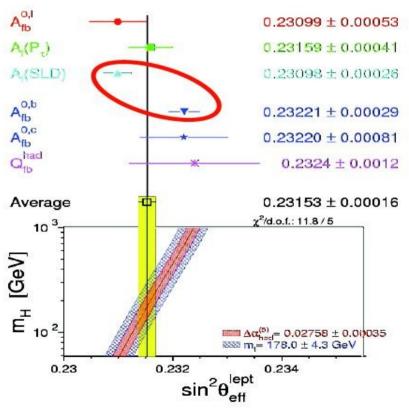
Updated: 20 February 2006

Motivation: LEP/SLC tension

Current LEP & SLC best sin²θⁱ_{eff} measurements show tension

- This measurement is the one with **largest tension** with the SM fit.
- Most precise single Individual determination of sin²θ[']_{eff}

from SLC \rightarrow Left-right asymmetry of leptons


Most precise single Individual determination of sin²0^l_{eff}

from LEP \rightarrow forward backward assymetry (b-quark)

Heavy quark effect, effect on all quarks/fermions, no effect at all?

The **resolution** of this issue requires improving the the measurements precission an order of magnitude

Per mil level of experimental precision is required

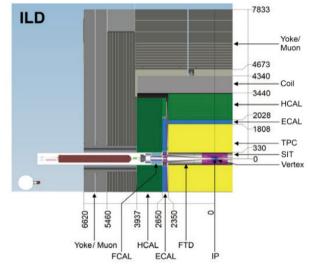
Detector Technologies

Vertex: CMOS, DEPFET, FPCCD, ...

Tracker:

TPC (GEM, micromegas, pixel) + silicon pixels/strips

ECAL:


Silicon (5x5mm²) or Scintillator (5x45mm²) with Tungsten absorber

HCAL:

Scintillator tile (3x3 cm²) or Gas RPC (1x1 cm²) with Steel absorber

All inside solenoidal coil of 3-4 T

Detector R&D collaborations:

ILD Design Goals

Features of ILC:

low backgrounds, low radiation, low collision rate (5-10 Hz)

These allow us to pursue aggressive detector design:

Detector Requirements	Physics
 Impact parameter resolution σ(d₀) < 5 ⊕ 10 / (p[GeV] sin^{3/2}θ) μm 	H → bb,cc,gg,ττ
• Transverse momentum resolution $\sigma(1/p_T) = 2 \times 10^{.5} \text{GeV}^{.1} \oplus 1 \times 10^{.3} / (p_T \sin^{1/2}\theta)$	Total e+e- > ZH cross section
 Jet energy resolution 3-4% (around E_{jet} ~100 GeV) 	H→invisible
• Hermeticity $\theta_{min} = 5 \text{ mrad}$	H → invisible; BSM

R. Ete: "The ILD Software Tools and Detector Performance"

10

laboration

9

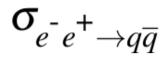
LEP

2500

Beam spot size

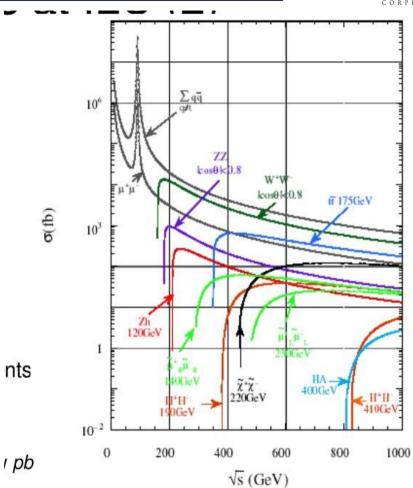
SLC

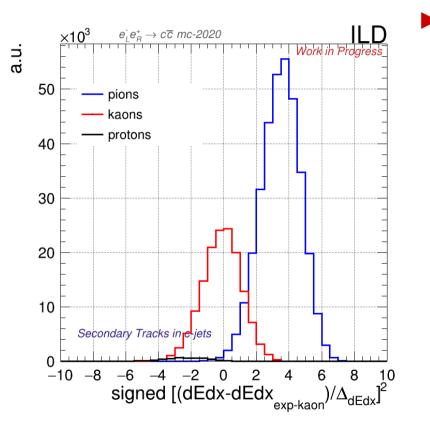
>>


>>

EF03 Kickoff

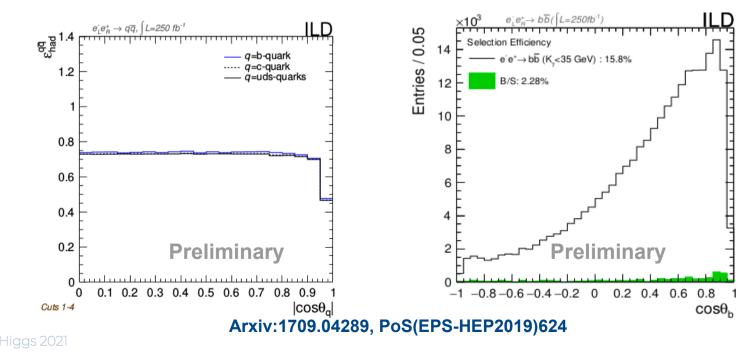
ILC


Cross sections

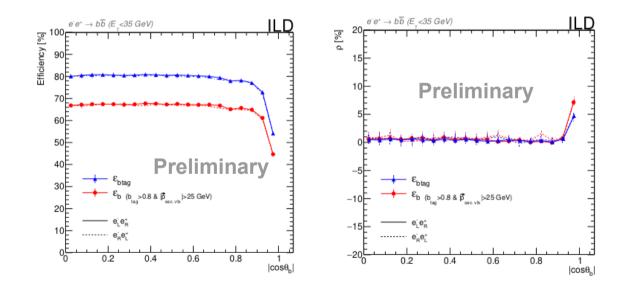

	Channel	$\sigma_{_{\mathrm{unpol}}}$ [fb]	σ _{_,+} [fb]	σ _{+,-} [fb]
	q=t	572	1564	724
500 GeV	q=b	372	1212	276
	q=u+d+s+c	2208	6032	2793
250 GeV	q=t			
	q=b	1756	5677	1283
	q=c	3020	8518	3565
	q=u+d+s	6750	18407	5463

Beam polarisation also enhances the cross section values

Kaon identification for the ccbar case


- Using dEdx separation power: signed [(dEdx-dEdx_{exp-kaon})/Δ_{dEdx}]²
 - dEdx_{exp-kaon} = theoretical curve (B.Bloch)
 - Delta dEdX = experimental uncertainty

- Preselection aiming for high background rejection and high efficiency.
- ▶ Main bkg ee→ Zγ(ISR)


- ~x10 larger than signal
- ~90% of such ISR photons are lost in the beam pipe → events filtered by energy & angular mom. conservation arguments
- The remaining ~10% are filtered by identifying photons in the detector (efficiency of >90%)

Analysis chain: Double Tag Method

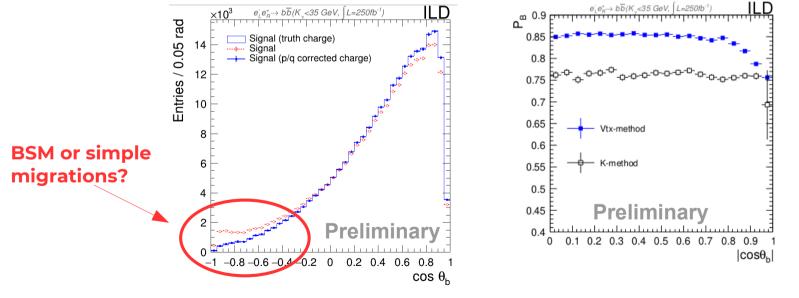
- The method is based on the comparison of single vs double tagged samples
- ► It is required to minimize the modeling dependence on the efficiency of b-tagging → aiming to the per mil precision

Excellent prospects for b-tagging (or c-tagging) with very low correlation factor ~ 0% (~2% at LEP)

Differential measurements!

- Constant values for most of the angles
- Drop of acceptance the very forward region → optimizations are under consideration

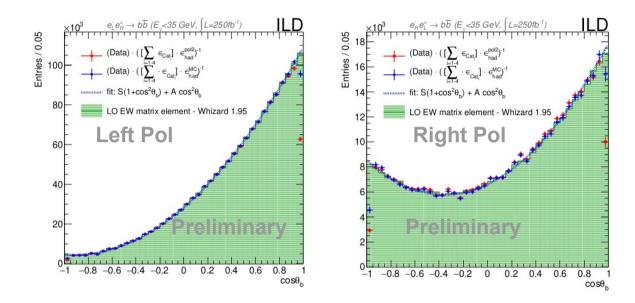
Miss-efficiencies very small


- <1% for c-quark
- ~0% for uds

Arxiv:1709.04289, PoS(EPS-HEP2019)624

Analysis chain: jet charge

IFIC LASTITUT DE FÍSICA


- Mis-measurements of the jet charge produce a flip of the sign in the differential distribution: **migrations**.
 - Mistakes due to lost tracks, mis-identification of kaons...
- Migrations look as "new physics" → we need to correct them
 - Using data: double charge measurements with same and opposite charges (see back-up slides)
 - We measure the probability to reconstruct correctly the charge ($P_{_{\rm B}}$) and use it for correction
 - DATA DRIVEN METHOD.

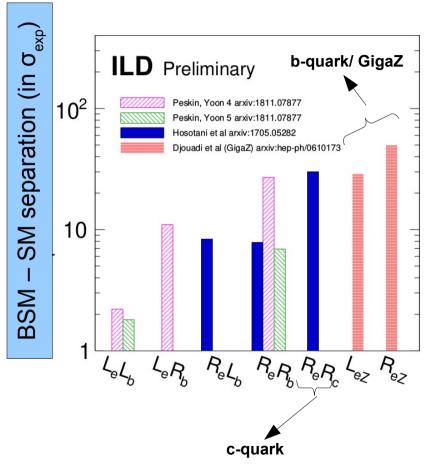
P_B limited by vertex reconstruction efficiency, Particle ID efficiency and B0 oscillations.

Results (1)

Beam Polarisation			
	(-+)	(+-)	
R_b^{cont} .	$0.173\pm0.12\%$ (stat.) \pm 0.14% (syst.)	$0.130\pm0.15\%$ (stat.) \pm 0.13% (syst.)	
$A_{FB}^{b\bar{b}}$	$0.6823 \pm 0.15\%$ (stat.) $\pm 0.06\%$ (syst.)	$0.3487 \pm 0.75\%$ (stat.) $\pm 0.29\%$ (syst.)	

Excellent agreement between predicted and reconstructed distributions

- Gap between red dots and green histogram = acceptance drop.
- Blue dots = corrected acceptance
- ▶ The fit is restricted to |costheta|<0.8
- Minimal impact of the corrections


Stat unc (2000 fb-1)

Syst unc.:

- Selection and background rejection
- quark tagging/mistagging (modelisation, QCD, correlations)
- Luminosity
- Polarisation

Many BSM predict deviations only for the right couplings

BEAM POLARISATION is crucial

Expected number of standard deviations for different **RS/compositeness BSM scenarios** when determining the different EW couplings to c- and b-quark at **ILC250** (with GigaZ input).

- Models that predict multi-TeV Z' resonances
- With or without mixing at Z-pole
- See backup for more details on the models

Potential for discovery of new resonances mZ' ~ O(10-20) TeV at ILC250

Arxiv:1709.04289, PoS(EPS-HEP2019)624 +GigaZ-ILC250 complementary arxiv:1905.00220

28