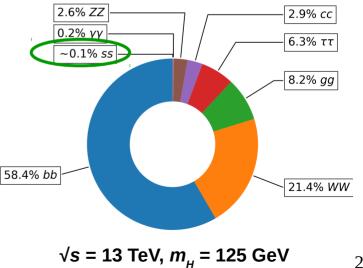
Strange quark tagging with ILD to search for new physics in the Higgs sector

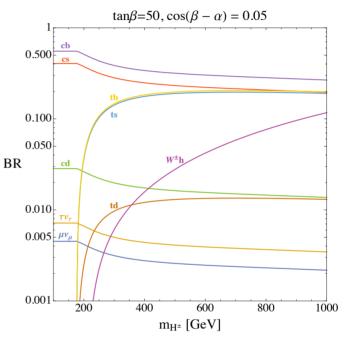
<u>Higgs 2021 – October 18-22, 2021</u> YSF Plenary Track – October 21, 2021 – Indico

Presented by Matthew Basso (University of Toronto), on behalf of everyone on the Snowmass 2021 Lol and the ILD Collaboration


Overview

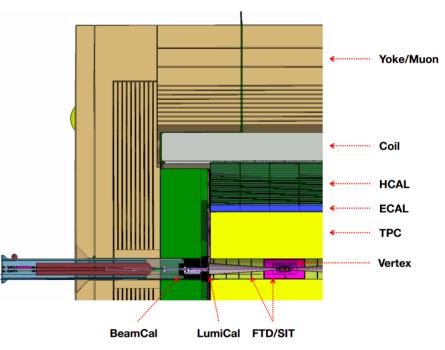
- Submitted a Letter of Interest as part of Snowmass 2021
 - Basic goal: assess sensitivity of Higgs to strange couplings with ILD@ILC and set constraints on detector design
 - In line with ILC Snowmass 2021 study questions (2007.03650)
 - Interplay with the instrumentation: • strange tagging capabilities strongly depend on the detector (e.g., PID)

Strange guark as a probe for new physics in the Higgs Sector


M.J. Basso^(a), V.M.M. Cairo^(b), U. Heintz^(c), J. Luo^(c), M. Narain^(c), R.S. Orr^(a), A. Schwartzman^(b), J. Strube^(d), D. Su^(b), T. Tanabe^(e), E. Usai^(c), C. Vernieri^(b), C. Young^(b)

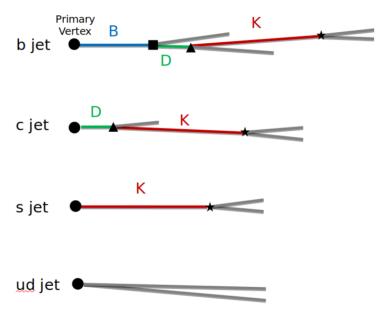
(a) University of Toronto. Toronto ON - Canada (b) SLAC National Accelerator Laboratory, Stanford CA – USA (c) Brown University, Providence RI – USA (d) University of Oregon, Eugene OR - USA (e) High Energy Accelerator Research Organization, Tsukuba - Japan

$H \rightarrow ss$ and $H \rightarrow cs$


- *H*→*ss*: extremely challenging unless enhanced relative to SM expectations
- H→cs: some BSM models allow for the 1st and 2nd generation fermion masses to be an additional source of EW symmetry breaking
 - Result in "SM" and "heavy" Higgs doublets
 - Predicts an enhancement to Higgs cross section
 - Charged heavy Higgs can undergo flavour violating decays (e.g., cs) – s/c-tagging can help

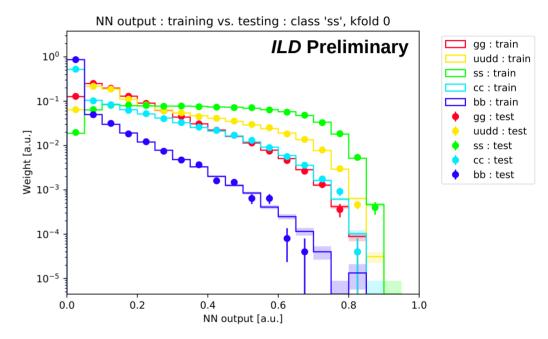
Charged heavy Higgs branching ratios. Taken from Fig. 6 of 1610.02398.

The International Large Detector


- ILC: √s = 250 GeV, 2000 fb⁻¹ (1809.09504)
- The ILD detector
 - 3 double-layer pixel detectors for vertexing
 - Time projection chamber (TPC) for tracking with inner/outer Si layers
 - Low material assists in low-p tracking
 - High granularity sampling calorimeters for particle flow reconstruction
 - Challenge is reconstructing neutral hadrons
 - Precise EM/hadronic design still under study
 - Tracking/calorimetry contained in 3.5 T field

ILD detector quadrant. Taken from Fig. 1 of 1912.04601.

Jet flavour tagging classification


- Use a *neural network*-based tagger (architecture in Backup) for classifying jets by flavour
- Train on ILD-reconstructed (Z→inv)(H→qq/gg) samples (100% polarized)
- Use per-jet level inputs as well as variables on the 10 leading particles in each jet:
 - <u>Jets</u>: momentum p, pseudorapidity η , polar angle ϕ , mass m, b/c/o-tagger scores, category, $N_{\text{particles}}$
 - <u>Particles</u>: p, η , ϕ , m, charge, **truth** electron/muon/pion/kaon/proton likelihoods (0 or 1, using PDG ID – "kaons" include K_{S^0} , $K^{+/-}$, and Λ)

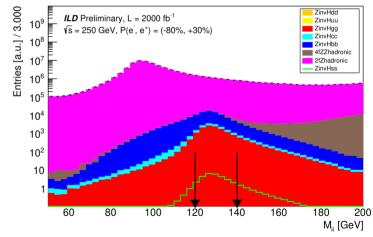
Different jet types. Picture borrowed from T. Tanabe's slides, see Backup.

Tagger performance

- Shown is the strange score output – good train-test agreement
- Good discrimination of s jets from u/d jets – likely comes from using truth likelihoods
 - Also good discrimination of s jets from g jets – here, N_{particles} is powerful

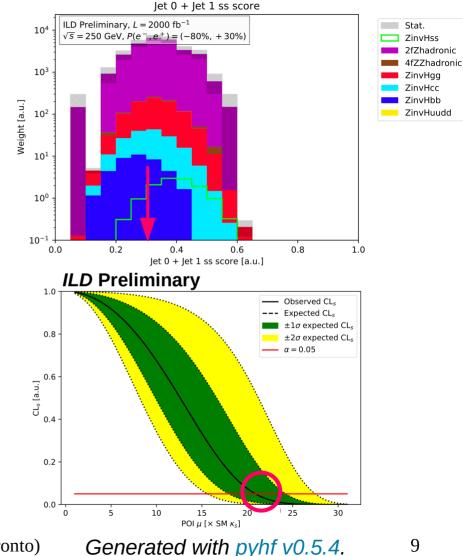
Train-test agreement for all output nodes in Backup (ROC curves too).

H→ss analysis


- Performed on same $H \rightarrow qq/gg$ samples (500K events per flavour) as well as $Z \rightarrow qq$ and $ZZ \rightarrow qqqq$ samples (~1M events each)
 - Scale BR[$H \rightarrow cc$] by ratio of s/c quark mass ratio squared: BR[$H \rightarrow ss$] ~ 2E-4
- Kinematic selection:
 - Jet quantities: leading/subleading jet momenta, p_j ; dijet mass, M_{jj} ; dijet energy, E_{jj}
 - Missing 4-vector quantities: mass, M_{miss} ; angular separation, $\Delta R_{jj,\text{miss}} = \sqrt{(\Delta \phi_{jj,\text{miss}}^2 + \Delta \eta_{jj,\text{miss}}^2)}$
 - Leading/subleading *b/c/o*-tagger (1506.08371) scores and jet category
 - Number of Particle Flow Objects (PFOs): per event, N_{PFOs} /event; per jet, N_{PFOs} /jet

Cutflow

ILD Preliminary, $\mathcal{L} = 2000 \text{ fb}^{-1}$, $\sqrt{s} = 250 \text{ GeV}$, $P(e^-, e^+) = (-80\%, +30\%)$

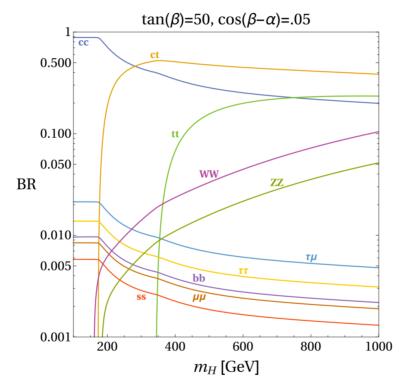

	· ·	, , , , ,							
	$ (H \to s\bar{s})(Z \to \nu\nu)$	$(H \to gg)(Z \to \nu \nu)$	$(H \to u \bar{u}/d \bar{d})(Z \to \nu \nu)$	$(H \to c\bar{c})(Z \to \nu\nu)$	$(H\to b\bar{b})(Z\to\nu\nu)$	$Z o q \bar{q}$	$ZZ ightarrow q \bar{q} q \bar{q}$	Sig. eff.	Bkg. eff.
No cut	42.65 ± 0.06	17254.17 ± 24.41	0.59 ± 0.0	5858.77 ± 8.29	116168.67 ± 164.29	$176876516.6 \pm 161411.64$	1342206.08 ± 1338.33	1.00e+00	1.00e+00
No leptons	42.55 ± 0.06	17225.89 ± 24.39	0.59 ± 0.0	5846.08 ± 8.28	115535.31 ± 163.84	$175328405.19 \pm 160703.71$	1335436.33 ± 1334.95	9.98e-01	9.91e-01
≥ 2 jets	42.55 ± 0.06	17225.89 ± 24.39	0.59 ± 0.0	5846.08 ± 8.28	115535.31 ± 163.84	$175328405.19 \pm 160703.71$	1335436.33 ± 1334.95	9.98e-01	9.91e-01
$p_{j0}, p_{j1} > 30 \text{ GeV}$	39.46 ± 0.06	16424.08 ± 23.81	0.55 ± 0.0	5619.05 ± 8.12	109492.68 ± 159.5	$131310044.43 \pm 139074.89$	1331247.44 ± 1332.86	9.25e-01	7.44e-01
$M_{jj} \in [120, 140] \text{ GeV}$	29.75 ± 0.05	12459.56 ± 20.74	0.42 ± 0.0	3883.41 ± 6.75	63849.78 ± 121.8	7424895.55 ± 33070.82	8041.49 ± 103.59	6.97e-01	4.21e-02
$E_{jj} \in [125, 160] \text{ GeV}$	29.62 ± 0.05	12401.25 ± 20.69	0.42 ± 0.0	3862.38 ± 6.73	63407.65 ± 121.38	4027593.77 ± 24356.93	6111.86 ± 90.31	6.94e-01	2.31e-02
$M_{\text{miss}} \in [75, 120] \text{ GeV}$	27.56 ± 0.05	11614.11 ± 20.02	0.39 ± 0.0	3612.75 ± 6.51	59551.31 ± 117.63	867590.51 ± 11304.65	2105.79 ± 53.01	6.46e-01	5.30e-03
$\Delta R_{ij,\text{miss}} < 4$	23.82 ± 0.05	10039.07 ± 18.62	0.34 ± 0.0	3124.94 ± 6.05	51512.9 ± 109.4	151865.16 ± 4729.65	1537.31 ± 45.29	5.58e-01	1.22e-03
$\mathrm{score}^{b}/\mathrm{jet} < 0.2$	22.2 ± 0.04	8593.49 ± 17.22	0.32 ± 0.0	1917.39 ± 4.74	551.1 ± 11.32	88968.53 ± 3620.08	689.92 ± 30.34	5.20e-01	5.65e-04
$\mathrm{score}^c/\mathrm{jet} < 0.35$	20.72 ± 0.04	7745.04 ± 16.35	0.3 ± 0.0	302.77 ± 1.88	179.83 ± 6.46	73060.25 ± 3280.5	548.47 ± 27.05	4.86e-01	4.59e-04
$N_{\rm PFOs}/{\rm event} \in [30, 60]$	13.93 ± 0.03	854.7 ± 5.43	0.2 ± 0.0	146.28 ± 1.31	44.14 ± 3.2	33584.15 ± 2224.16	64.05 ± 9.25	3.27e-01	1.95e-04
$N_{\rm PFOs}/{\rm jet} \in [10, 40]$	12.53 ± 0.03	778.96 ± 5.19	0.18 ± 0.0	136.34 ± 1.26	39.96 ± 3.05	26955.7 ± 1992.62	56.05 ± 8.65	2.94e-01	1.57e-04

- Largest **decrease** in signal efficiency at M_{ii} cut
 - Provides one of the strongest handles on reducing $Z \rightarrow qq$
 - H→bb s/b = 0.00065 @ No cut comparable to analysis from T. Ogawa's thesis (Section 6.2)
- 29% signal, 0.016% background efficiency
 - All histograms in Backup

Limits on coupling strength modifier

- Cut on (0.5x) sum of strange scores for leading and subleading jets >0.3, generated limits for modifier to SM BR
 - Asymptotic significance ~ 0.1σ (see Backup)
- 95% upper confidence bounds at ~21 x SM κ_s (in the kappa framework, κ_s^2 is the modifier to $BR[H \rightarrow ss]$)
 - N.B.: observed is *identical* (by design) to expected in the plot
 - Sigma bands around expected decrease with smaller cut values (better $Z \rightarrow qq$ MC stats)

Matthew Basso (Toronto)

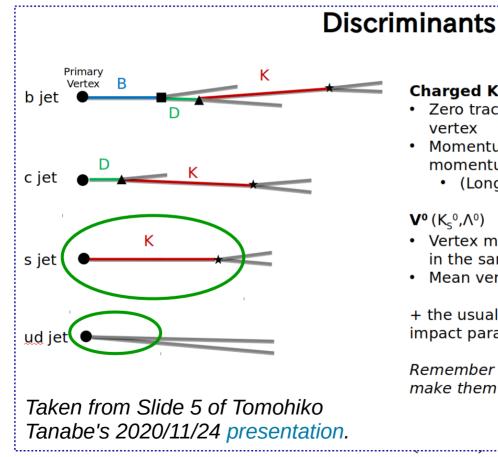

Discussion and outlook

- Discovery measurement seems *unlikely* looking at best case tagger
 - For 30% signal efficiency, need **10,000x** better background rejection
 - Set limits on coupling strength modifier κ_s at **O(20)** x **SM prediction** using 2000 fb⁻¹ of data at \sqrt{s} = 250 GeV (combined limits for ILC and other future colliders in Backup)
- Gains would come from **reducing** the $Z \rightarrow qq$ background
 - As a suggestion from the ILD community, quantities like $\Delta \phi_{ij}$ or $p_{T^{j}}$ should help
 - More statistics are available for the $Z \rightarrow qq$ and $ZZ \rightarrow qqqq$ backgrounds
- May try and provide prospects for BSM 2HDM $H \rightarrow cs$ or $H(125) \rightarrow bs$ decays
- Work will be documented in a paper as part of Snowmass 2021

Questions?

Backup

Neutral heavy Higgs BRs



Neutral heavy Higgs branching ratios. Taken from Fig. 3 of 1610.02398.

Matthew Basso (Toronto)

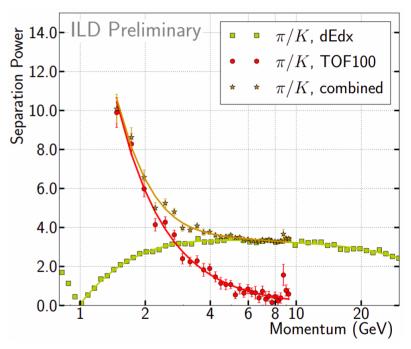
2021/10/21

Different jet types, pictorially

Charged Kaon track

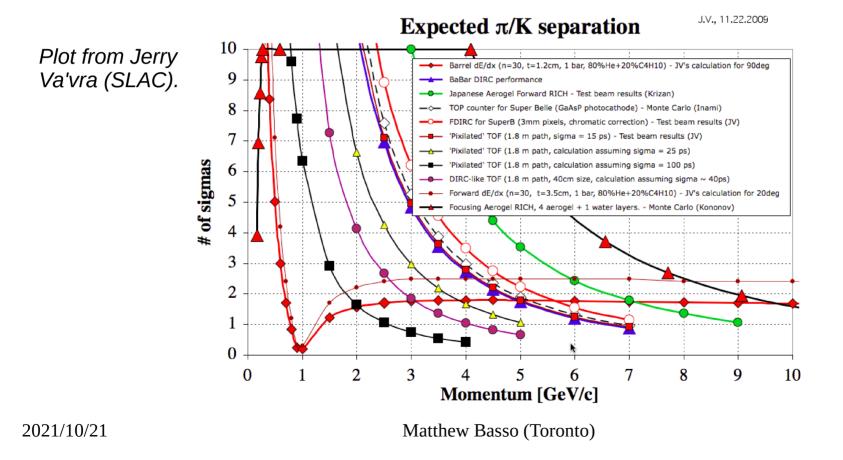
- Zero track impact parameter w.r.t. primary vertex
- Momentum fraction relative to the jet momentum carried by the leading Kaon
 - (Longitudinal vs transverse components?)

$V^{0}(K_{S^{0}},\Lambda^{0})$


- Vertex momentum & displacement must point in the same direction
- Mean vertex distance smaller compared to b/c

+ the usual b/c discriminants (vertex mass, impact parameter for all tracks, etc.)

Remember to normalize the discriminants to make them boost invariant (as much as possible)


Flavour tagging requirements

- Good impact parameter resolution, secondary vertexing pertinent to *b/c*-tagging
- For strange versus up/down ("light") quark tagging, there's a need for **kaon tagging**
 - TPC provides *dE/dx*, Si detectors on either side of TPC provide time-of-flight (TOF) measurement
 - TOF works best at low p (< 10 GeV), expect dE/dx to work better for kaon tagging (where p > 10 GeV)
- ILD already provides BDT scores for *b/c*-taggers and an other ("*o*") tagger per jet

ILD separation power for pions and kaons using dE/dx and TOF (100 ps resolution). Taken from Fig. 3 of 1912.04601.

π/K separation for different detectors

Tagger architecture: pictorially

- Neural network architecture:
 - Multiclassifer (5 output classes: gluon, light, strange, charm, or bottom)
 - 3 layer recurrent neural network (using Gated Recurrent Units or GRUs) for particle-level inputs
 - Concatenated with jet-level inputs and fed into a 3 layer MultiLayer Perceptron (MLP)
 - Applied to strange tagging performance at hadron colliders
 - "Maximum performance of strange-jet tagging at hadron colliders" (2011.10736)

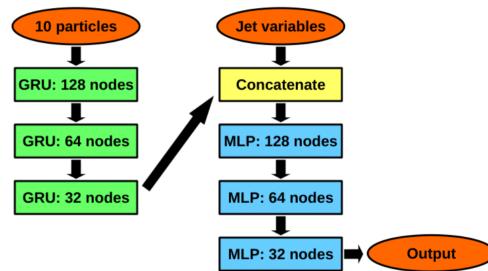
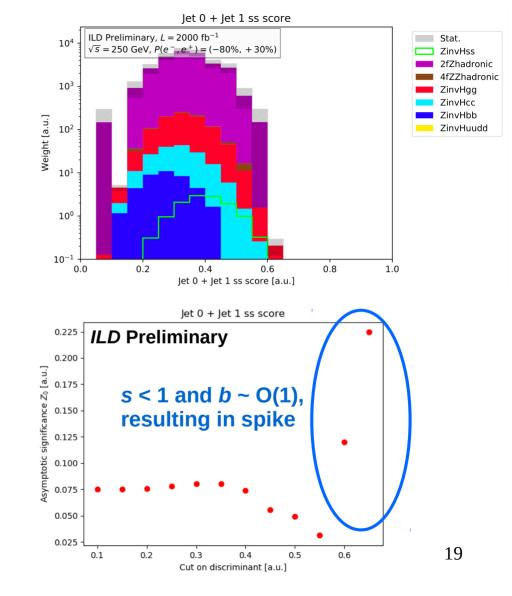


Table 2: Cross-sections and number of generated MC samples on the Higgs production processes and the major SM background processes for both $\sqrt{s} = 250$ and 500 GeV. The cross-sections given in the table are set to be each operation beam polarization states: $P(e^-, e^+) = (-80\%, +30\%)$ and $P(e^-, e^+) = (+80\%, -30\%)$, whereas the number of MC samples are given with fully beam polarization states: $P(e^-, e^+) = P_{e^-}^L P_{e^+}^R = (-100\%, +100\%)$. The eeH(s) and eeH(t) denote the *s*-channel ZH process and the *t*-channel ZZ-fusion processes. $2f \rfloor a$ and $2f \rfloor h$ in the table indicate that the final state has a lepton pair such as charged leptons or neutrinos, and a quark pair like $u\bar{u}, d\bar{d}$ except $t\bar{t}$. $4f \rfloor a$ and $4f \rfloor h$ are the same indication with $2f \rfloor or 2f \rfloor h$, that means a final state has two lepton pairs or two quark pairs. $4f \rfloor s$ shows that a final state has a lepton pair and a quark pair. At $\sqrt{s} = 500$ GeV 6f is included in the SM backgrounds, where possible diagrams of 6 fermions in a final state are considered such as $t\bar{t}$ and a fermion pair with two W bosons and two fermion pairs with the Z boson.

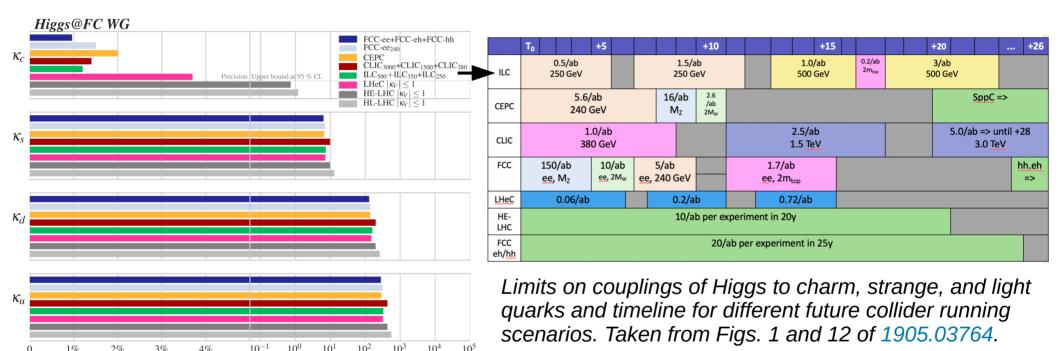
e⁺e⁻ cross sections

Table 2, taken from page 62 of Tomohisa Ogawa's thesis.

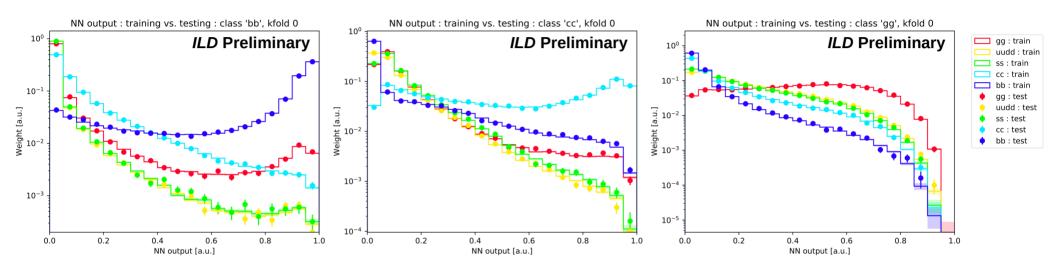

$\sqrt{s}=250$ G	eV operation pol	arization	fully polarization					
	Cross-section (MC sample						
$\mathcal{P}(e^-,e^+)$	(-80%, +30%)	(+80%, -30%)	$P^L_{e^-}P^R_{e^+}$	$P^R_{e^-}P^L_{e^+}$	$P^L_{e^-}P^L_{e^+}$	$P^R_{e^-}P^R_{e^+}$		
eeH(s)	10.7	7.14	$4.00\cdot 10^4$	$1.00\cdot 10^4$	0	0		
eeH(t)	0.71	0.52	$1.00\cdot 10^4$	$1.00\cdot 10^4$	3992	3992		
$\mu\mu H$	10.4	7.03	$4.00\cdot 10^4$	$1.00\cdot 10^4$	0	0		
qqH	210.2	141.9	$5.45\cdot 10^5$	$2.94\cdot 10^5$	0	0		
$\nu\nu H$ (s)	61.6	41.6	$12.8\cdot 10^4$	$6.50\cdot 10^4$	0	0		
$\nu\nu H$ (t)	15.4	0.93	$12.8\cdot 10^4$	$6.50\cdot 10^4$	0	0		
$2f_{-l}$	$3.82\cdot 10^4$	$3.49\cdot 10^4$	$2.63\cdot 10^6$	$2.13\cdot 10^6$	$5.03\cdot 10^5$	$5.03\cdot 10^5$		
$2f_h$	$7.80\cdot 10^4$	$4.62\cdot 10^4$	$1.75\cdot 10^6$	$1.43\cdot 10^6$	0	0		
$4f_{-l}$	$6.03\cdot 10^3$	$1.47\cdot 10^3$	$2.25\cdot 10^6$	$9.80\cdot 10^4$	$2.73\cdot 10^5$	$2.73\cdot 10^5$		
$4f_{-}sl$	$1.84\cdot 10^4$	$2.06\cdot 10^3$	$4.04\cdot 10^6$	$3.56\cdot 10^5$	$9.78\cdot 10^4$	$9.78\cdot 10^4$		
$4f$ _h	$1.68\cdot 10^4$	$1.57\cdot 10^3$	$2.38\cdot 10^6$	$2.42\cdot 10^5$	0	0		

Signal discriminant

- Use (0.5x) sum of strange jet scores for the leading and subleading jets as the discriminant
 - Tested different cuts, calculating the asymptotic significance (neglecting MC stats) as:


 $Z_0 = \sqrt{(2 * ((s + b) * \ln(1 + s / b) - s))}$

- Best cut seems to be around >0.3
 - Corresponds to $Z_0 \sim 0.1\sigma$

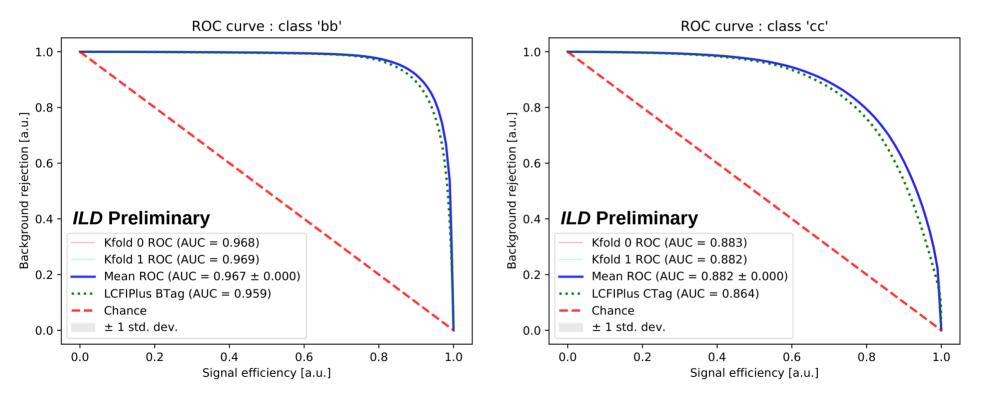

2021/10/21

Expected limits from future colliders

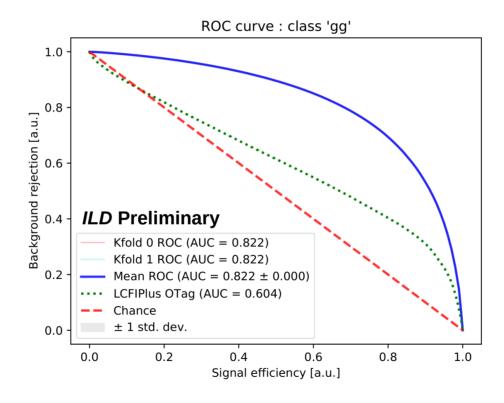
Train-test agreement in neural network output nodes

Performance: b, c, and g jets

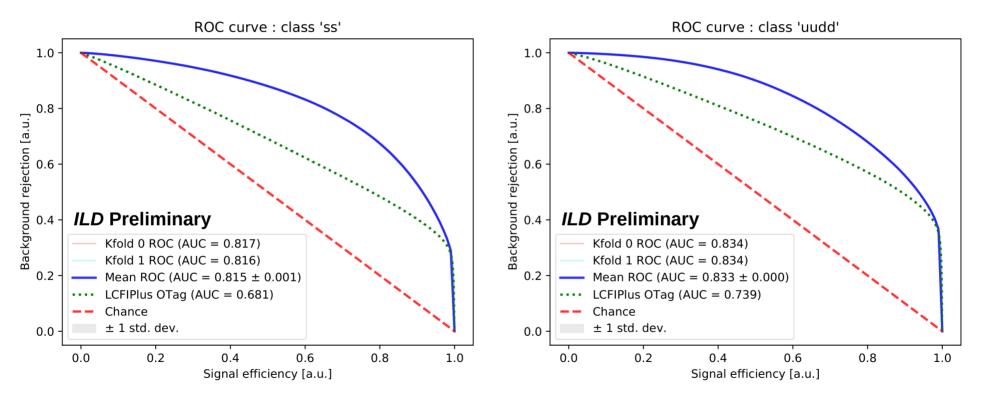
- Network likely returning *b/c*-tagger scores should do just as well or better than input BDT scores
- Good discrimination of gluon jets


Performance: s and uld jets

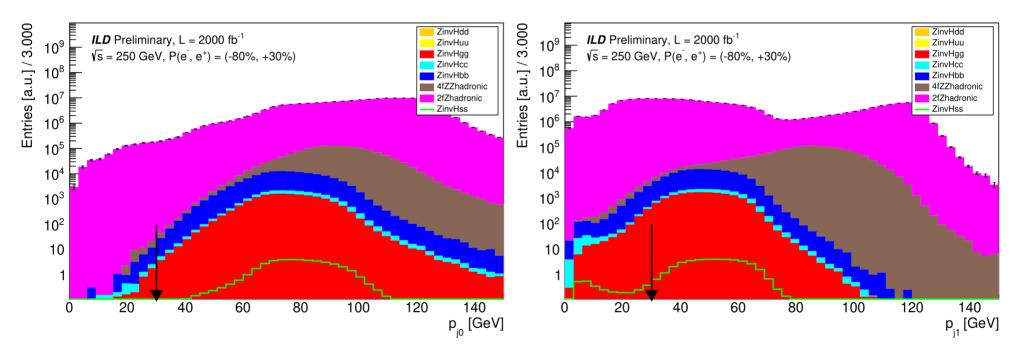
- Separation of s and *uld* is **possible** with using truth likelihoods
- At 50% strange tagging efficiency, we have 90% background rejection over 70% for LCFIPlus Otag (see ROC curves)


ROC curves for neural network output nodes

ROC curves: *b* and *c* jets

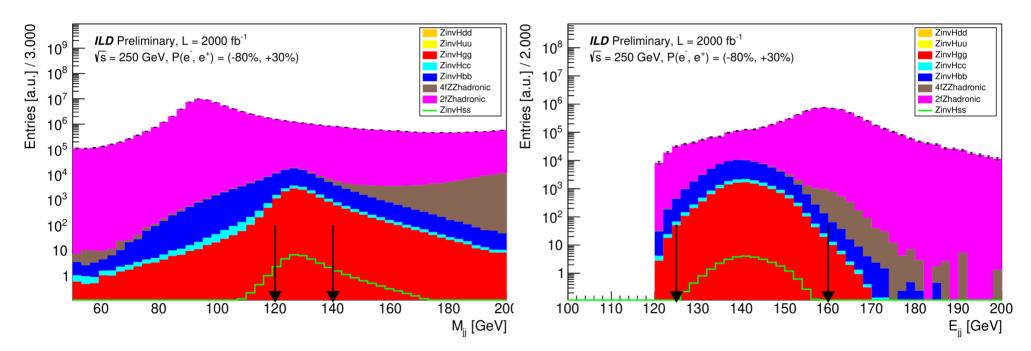

2021/10/21

ROC curves: g jets

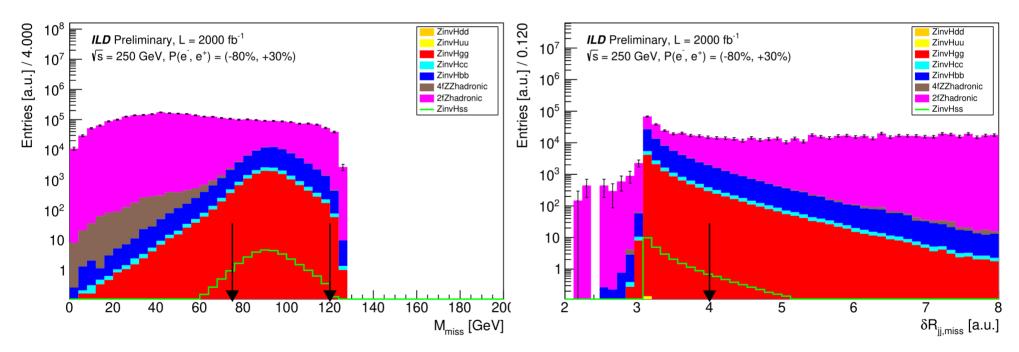

2021/10/21

ROC curves: *s* and *uld* jets

Histograms at each cut in $H \rightarrow ss$ analysis

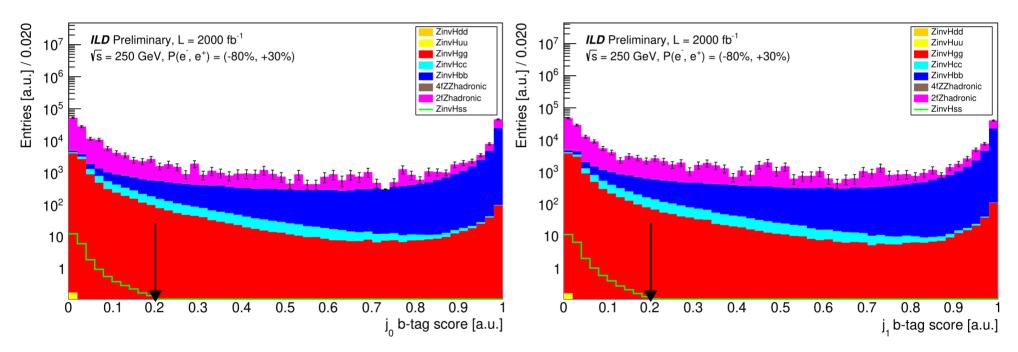

Histograms: p_{j0} and p_{j1}

Unstacked green line is signal


Matthew Basso (Toronto)

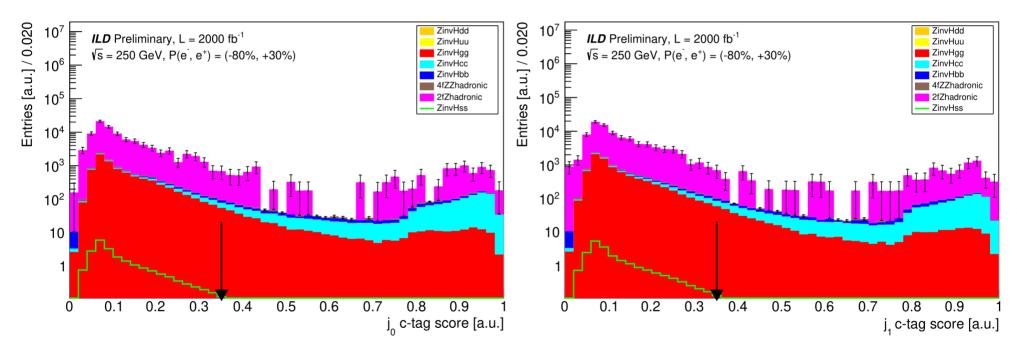
Histograms: M_{jj} and E_{jj}

Unstacked green line is signal


Histograms: M_{miss} and $\Delta R_{jj,\text{miss}}$

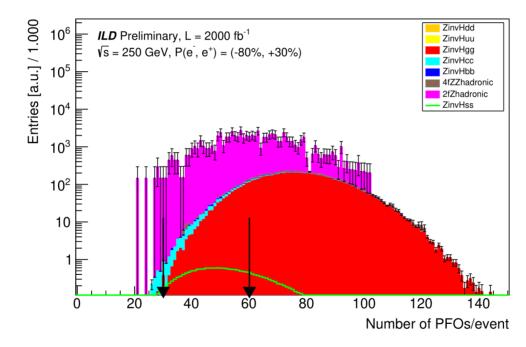
Unstacked green line is signal

Matthew Basso (Toronto)

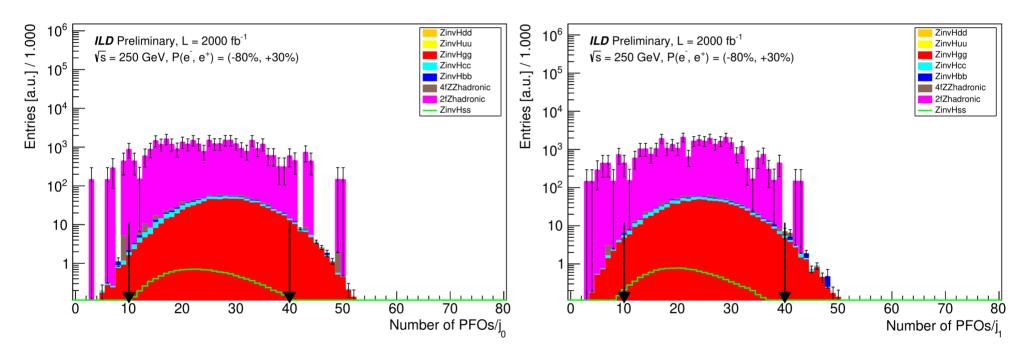

Histograms: b-tagger scores

Unstacked green line is signal

2021/10/21


Histograms: c-tagger scores

Unstacked green line is signal


2021/10/21

Histograms: N_{PFOs}/event

Unstacked green line is signal

Histograms: N_{PFOs}/jet

Unstacked green line is signal

Matthew Basso (Toronto)